
CJM-ab: Abstracting Customer Journey Maps
using Process Mining

Gaël Bernard1 and Periklis Andritsos2

1 University of Lausanne, Faculty of Business and Economics (HEC), Switzerland
gael.bernard@unil.ch

2 University of Toronto, Faculty of Information, Canada
periklis.andritsos@utoronto.ca

Abstract. Customer journey mapping (CJM) is a popular technique
used to increase a company’s understanding of their customers. In its
simplest form, a CJM shows the main customer paths. When dealing with
complex customers’ trajectories, these paths are difficult to apprehend,
losing the benefit of using a CJM. We present a javascript-based tool that
can leverage process mining models, namely process trees, and business
owners’ knowledge to semi-automatically build a CJM at different levels of
granularity. We applied our approach with a dataset describing a complex
process, and shows that our technique can abstract it in a meaningful
way. By doing so, we contribute by showing how process mining and CJM
can be put closer together.

Keywords: customer journey mapping, process mining, process tree,
customer journey analytics

1 Introduction

A customer journey map (CJM) is a conceptual tool used to visualize typical
customers’ trajectories when using a service. In their simplest form, CJMs
show the interactions between a customer and a service provider through time.
A series of interactions is called a journey. Because CJMs give a company a
better understanding of their customers, they are becoming increasingly popular
amongst practitioners. A CJM can be used as a design thinking tool by internal
stakeholders to anticipate the best – or worst – journeys possible. Such journeys,
displayed on a CJM, are called the expected journeys. However, customers might
experience a different journey from the one anticipated. For this reason, few
researchers [4,5,10] propose leveraging traces left by customers in information
systems to build CJMs from evidence. Because the journeys that will be displayed
on the CJM are produced from facts, we refer to them as the actual journeys.
Such approaches are in line with the urgent call from the authors Lemon and
Verhoef to take a data-driven approach to map the customer journey [15].

However, when dealing with numerous journeys, it becomes unrealistic to
display all the actual journeys on a single CJM. For illustration purposes, Fig.
1 depicts 10,000 instances of the traces related to the handling of reviews for



time

➊ invite reviewers
get review 2
time-out 1
time-out 3
collect reviews
decide
invite add. reviewer
time-out X
get review X
accept
reject

time

➋ 

 

time

invite reviewers

review [1-3]

collect reviews

decide

get add. reviews

accept

reject

Complexity slider:

➌ invite reviewers
time-out 1
get review 2
time-out 3
collect reviews
decide
invite add. reviewer
time-out X
get review X
reject
get review 3
accept
time-out 2
get review 1

Fig. 1. Three possible ways to display the handling of reviews for a journal from [1] on
a CJM: Ê projecting the actual journeys (only the first 100 – out of 10,000 – journeys
are displayed); Ë using two representative journeys; and, Ì using two representative
journeys and abstracting the activities using the technique presented in this paper.

a journal, a synthetic dataset available in [1]. In the context of this dataset,
the service provider is the conference’s organizing committee, the customers are
the researchers submitting their papers, and a journey describes the handling
of the reviews, from the submission until the final decision. In Fig. 1, part Ê,
it is difficult to apprehend the typical paths of the reviewing process. To this
end, representative journeys have been introduced as a means of reducing the
complexity. Indeed, the central CJM (Ë) uses two representative journeys to
summarize 10,000 actual journeys. Although representative journeys decrease the
complexity by reducing the number of journeys, a CJM might still be difficult
to apprehend when it is composed of many activities. Indeed, even though only
representative journeys are used, quickly spotting the main differences between
the two journeys visible in Ë (Fig. 1) is not straightforward due to the high
number of activities and the length of the journeys.

We propose CJM-ab (for CJM abstractor) a solution that leverages the
expertise of process discovery algorithms from the process mining discipline to
abstract CJMs. More precisely, we take as an input a process tree, we parse
it, starting from the leaves, and iteratively ask the end-user if it is relevant to
merge the activities that belong to the same control-flow, and, if so, to provide a
name for this group of activities. By doing so, we let the end-user decide which
activities should be merged and how they should be renamed. Then, one can
visualize the same CJMs at different levels of granularity using a slider, which
is visible in Fig. 1, part Ì. At a certain level of granularity, we clearly observe,
given the end activities, that one representative journey summarizes the accepted
papers, while the other one depicts the rejected papers. The importance and
originality of CJM-ab is that it explores, for the first time, a seamless integration
of business process models with customer journeys maps.

The paper is organized as follows. Section 2 introduces process mining and
the process discovery activity. Section 3 describes the customer journey discovery
activity. Section 4 describes our algorithm, and section 5 provides a demonstration.
Finally, section 5 opens a discussion and concludes the paper.



2 Background

2.1 Process Mining and Process Discovery

Our approach is a seamless integration of Process Mining with Customer Journey
Mapping and showcases the impact that the latter can have in the analysis
of journeys. Process mining is an emerging discipline sitting between machine
learning and data mining on the one hand, and process modeling and analysis on
the other [2]. In this research, we focus on the discovery of process models, one
of the three types of process mining along with conformance and enhancement.

X + X

A B C D E F G τ

Fig. 2. One of the possi-
ble process trees given the
event log T = (〈bdcef〉,
〈acdefg〉, 〈bcdefgg〉)

The idea behind the discovery of process models
is to leverage the evidence left in information systems
to build process models from event logs. The resulting
process models are, therefore, based on factual data,
showing how the process was really executed. To build
such a model, process mining uses an input data
format called event logs. An event log is a collection
of traces, a trace being a single execution of a process
composed of one or multiple activities.

For illustration purposes, let T = (〈bdcef〉, 〈acdefg〉, 〈bcdefgg〉)
be an event log composed of 3 traces and 7 distinct activities. Regardless of the
notation, the resulting models can express the control-flow relations between
activities. For instance, for the event log, T , the model might express the following
notation: 1) a and b are in an XOR relation (×); i.e., only one of them is executed;
2) c and d are executed in parallel (+); i.e., both activities are executed in any
order; 3) e and f are in a sequence relation (→); i.e., f always follows e; 5) g is
in a XOR loop (Combination of × and 	); i.e., it can be executed 0 or many
times. Note that τ denotes a silent activity. It is used to correctly execute the
process but it will not result in an activity which will be visible in the event logs.
Fig. 2 displays the five aforementioned relations using a process tree.

Discovering a process model from event logs is a challenge. Indeed, state-of-
the-art algorithms should be robust enough to generalize (to avoid overfitting
models) without being too generic. They should also try to build process models
that are as simple as possible [3]. Many representations exist to express the
discovered process models: Petri nets, YAWL, process trees, state machines, or
bpmn models, to name a few. The next section introduces the notation used by
our algorithm: process trees.

Process Tree. A process tree is an abstract hierarchical representation of a
process model introduced by Vanhatalo et al. [17], where the leaves are annotated
with activities and all the other nodes are annotated with operators such as
× [14]. One interesting characteristic of process trees is that they guarantee
the soundness of the models. A model is considered to be not sound when
some activities cannot be executed or when the end of the process cannot be
reached. The soundness guarantee is one reason that we choose the process
tree notation. There are also three other reasons. First, process models in block



structure achieve best performance in terms of fitness, precision, and complexity
[3]. Second, the hierarchical structure of process trees is ideal to derive multiple
levels of granularity. Finally, according to Augusto et al. [3], process trees are
used by top-performing process model algorithms, such as the inductive miner
[12,11,13] or the Evolutionary Tree Miner [6].

2.2 Customer Journey Discovery

In [5], we proposed a process mining based model that allows us to map a
standard event log from process mining (i.e., XES [9]) to store customer journeys,
a first attempt to bring customer journeys and process mining closer together.

Discovering a set of representative journeys that best describe the actual
journeys observed in the event logs is a challenge inspired by the process discovery
challenge introduced in the previous section. However, instead of describing the
control flows of activities using a business process model, the main trajectories
(i.e., the representative journeys) are shown using a CJM. It encompasses three
important challenges: (1) choosing the number of representatives. Let k be this
number of representative journeys used on a CJM; (2) grouping actual journeys
in k clusters; and (3) for each k, finding a representative journey. We briefly
present these three challenges and ways to overcome them.

The first challenge is to set the number of representative journeys used to
summarize the entire actual journeys. Looking at Ê from Fig. 1, it is difficult
to say how many representative journeys should be used to summarize the data.
We identify two ways to solve this challenge. The number of representative
journeys can be set manually, or it can also be set using standard model selection
techniques such as the Bayesian Information Criterion (BIC) penalty [16], or the
Calinski-Harabasz index [7].

Once k has been defined, actual journeys should be split in k clusters and
a representative journey per cluster must be found. One of the ways, presented
in [4], is to first define a distance function between actual journeys, such as
the edit distance, or shingles, and to build a distance matrix; then, to split the
actual journeys in k groups using hierarchical clustering techniques. Next, the
representative can be found using a frequent sequence mining algorithm [4], by
counting the density of sequences in the neighborhood of each candidate sequence
[8], by taking the most frequent sequences [8], or by taking the medoid [8]. Instead
of inferring the representative from the distance matrix, it is also possible to obtain
it using statistical modeling [8]. We can employ an Expectation-Maximization
algorithm on a mixture of k Markov models, and then for each Markov model
the journey with the highest probability becomes the representative [10].

The next section describes a novel way to leverage business process models
to abstract customer journey maps.

3 Abstracting Customer Trajectories using Process Trees

CJM-ab uses four steps to render a CJM at different levels of abstraction. They
are depicted in Fig. 3. This chapter introduces each step. In the first step, the



goal is to build a process tree given an event log. This can be done using the
technique introduced in section 2.1. Next, using the same event log, the goal is
to build a CJM using the technique introduced in section 2.2.

X X X

+

1. Process Mining: 
Discovering a process 
tree from event logs

2. Customer Journey 
Mapping: Discovering a 

CJM from event logs

3. Traverse the tree and 
interact with end-user 

to merge activites

4. Transform the 
representative journeys at 

different levels of granularity

time time
to

uc
hp

oi
nt

s

to
uc

hp
oi

nt
s

Fig. 3. Rendering a CJM at different levels of abstraction in four steps

The third step consists of parsing the tree obtained in step 1. To this aim,
we developed a script in javascript which parses the process tree (i.e., XML file)
and performs a reverse Breadth-first search; i.e., traversing the operators in the
tree from the lowest ones to the root in a level-wise way. Let ` be the number
of operators in the process tree. At each of the ` operators of the process tree,
we offer the opportunity to the end-user to merge the leaves under the operator.
If the user chooses to merge the activities, she should provide a new name and
the operator virtually becomes a leaf. If the end-user chooses not to merge the
activities, we keep the leaves intact. If the answer is no, we keep the activities
separated at all levels of granularities, and we also disable the parents’ steps.
Indeed, we postulate that if a user does not want to merge two activities at a
low level of granularity, it does not make sense to merge them later at a higher
level of granularity.

Input : cjm, customer journey map
λ, level of abstraction
pt, process tree annotated with merging decisions

Output : cjmλ, cjm at the level of abstraction λ
1 Function GetLevelAbstraction(cjm, λ, pt)
2 for i← 0 to λ do
3 cjm→ Abstract(cjm, pt.operatori)

4 return cjm

5 Function Abstract(cjm, op)
6 foreach journey in cjm do
7 journey.replace(op.leaves, op.new_name, removeSeqRepeats=True )

8 return cjm

Algorithm 1: Function to get to the level of complexity λ

Finally, in step 4, we transform the CJM at different levels of abstraction. Let
λ be the number of abstractions which will be available for a CJM. It can be seen



as the number of steps that will be included in the sliders visible in Fig. 1, part
Ì. Note that λ is equal to the number of times the end-user decides to merge the
activities and that λ = ` when the end-user merges all the activities. Let operatorλ
be the λth operator to be merged. Let GetLevelAbstraction(cjm, λ, pt) be a
function that returns a CJM at the λth level of abstraction. Algorithm 1 shows
how the function Abstract is recursively called to get to the level of abstraction
λ. The parameter removeSeqRepeats in Algorithm 1 in line 7 emphasizes that
continuous sequence of activities that are to be replaced, will be replaced by only
one instance of the new name given for this operator. For instance, if the journey
is "AABCBAC", the leaves that are to be replaced, are "A" and "B" and the
new name is "X", the journey will become "XCXC". This reduces the length of
the journeys and, thus, increases the abstraction. One can go back from more
abstract to fine granular again by calling GetLevelAbstraction() again with a
smaller λ. The next section illustrates these four steps with a running example.

4 Demonstration

This section provides a running example of our developed tool. The running
example is based on synthetic event logs describing the handling of reviews for a
journal (from [1]) cited in the introduction. It contains 10,000 journeys and 236,360
activities. This demonstration is available on http://customer-journey.unil.
ch/cjm-ab/. In the first step, we obtained a process tree by using the inductive
miner [14] with default parameters3. It results in the process tree visible in
Fig. 4. In the second step, we obtain a CJM by: (1) measuring the distance
between actual journeys using the edit distance; (2) building a dendrogram using
a hierarchical clustering algorithm; (3) finding k using the Calinski-Harabaz Score
(k=2); (4) finding representative journeys using the function ‘seqrep’ available
in Traminer, a R package4. It results in a CJM which is visible in Ë (Fig. 1).
3 Using the software ProM available at http://www.promtools.org/doku.php
4 Available at: http://traminer.unige.ch/doc/seqrep.html

add. reviewers

add. reviewer

review 2review 1review 3X X X X

+ τ

X

1 2 3 review X5

4 6

7

9Merge activities
NOT merging activities

Legend:

reviews 1 to 3

invite 
rev…

get 
review 3

time-
out 3

get 
review 1

time-
out 1

get 
review 2

time-
out 2

collect 
reviews

decide
invite 
add. 
rev…

time-
out X

get 
review x

reject accept

X 8
STEP
ITER.

STEP
ITER.

STEP
ITER.

STEP
ITER.

STEP
ITER.

STEP
ITER.

STEP
ITER.

STEP
ITER.

STEP
ITER.

Fig. 4. Process tree annotated with the order in which the operators are parsed (i.e.,
‘iter. step’) and the decisions to merge the activities or not (i.e., colors red and green).

http://customer-journey.unil.ch/cjm-ab/
http://customer-journey.unil.ch/cjm-ab/


In the third step, we parse the XML in javascript. To traverse the tree, we are
using a tree-like data structures 5. The order in which the operators are parsed is
depicted in Fig. 4 (i.e., ‘step’). Fig. 4 shows that we decided to merge 7 out of the
9 operators (in green in Fig. 4). Note that we decided not to merge the activities
‘reject’ and ‘accept’, which disabled the option of merging all the activities below
step 9. The Fig 5 shows a screen capture of the application when merging the
activities during step 1. Finally, the Fig. 6 shows the resulting CJMs at three
levels of abstraction.

Fig. 5. Screen shot of the application during the merging process at ‘step 1’

Current Slider Value: 0

invite rev…
get review 2
time-out 1
time-out 3
collect reviews
decide
invite add. reviewer
time-out X
get review X
accept
reject

invite rev…

reviews 1 to 3

collect reviews

decide

invite add. reviewer

review X

accept

reject

Current Slider Value: 5

invite rev…

reviews 1 to 3

collect reviews

decide

add. reviewers

accept

reject

Current Slider Value: 7

Fig. 6. Results at the levels of abstraction 1, 3, and 7.

5 Conclusion

CJMs are being used more and more to help service providers put themselves in
their customers’ shoes. However, very little research has investigated automated
ways of building them. We contribute by showing how a process mining model
can be used to guide the abstraction of a CJM. By answering few questions
about the merging of the activities and by playing with the abstraction sliders,
we anticipate that our tool allows practitioners to gain new insights about their

5 Available at: https://github.com/joaonuno/tree-model-js.



data. By leveraging process trees – a format built within the process mining
community – we can bring customer journey analytics and process mining closer
together. We expect that many algorithms and works from process mining are
relevant for the discovery of customer journeys.

References

1. van der Aalst, W.: Synthetic event logs - review example large.xes.gz (2010), available
from https://doi.org/10.4121/uuid:da6aafef-5a86-4769-acf3-04e8ae5ab4fe

2. van der Aalst, W.: Process Mining: Data Science in Action. Springer (2016)
3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A.,

Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. arXiv preprint arXiv:1705.02288 (2017)

4. Bernard, G., Andritsos, P.: Cjm-ex: Goal-oriented exploration of customer journey
maps using event logs and data analytics. In: 15th International Conference on
Business Process Management (BPM2017) (2017)

5. Bernard, G., Andritsos, P.: A process mining based model for customer journey
mapping. In: Proceedings of the Forum and Doctoral Consortium Papers Presented
at the 29th International Conference on Advanced Information Systems Engineering
(CAiSE 2017) (2017)

6. Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.: Quality dimensions in pro-
cess discovery: The importance of fitness, precision, generalization and simplicity.
International Journal of Cooperative Information Systems 23(01), 1440001 (2014)

7. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Communications
in Statistics-theory and Methods 3(1), 1–27 (1974)

8. Gabadinho, A., Ritschard, G., Studer, M., Müller, N.S.: Extracting and rendering
representative sequences. In: International Joint Conference on Knowledge Discovery,
Knowledge Engineering, and Knowledge Management. pp. 94–106. Springer (2009)

9. Günther, C.W., Verbeek, E.: Xes-standard definition (2014)
10. Harbich, M., Bernard, G., Berkes, P., Garbinato, B., Andritsos, P.: Discovering

customer journey maps using a mixture of markov models (2017/12)
11. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured

process models from event logs-a constructive approach. In: International conference
on applications and theory of Petri nets and concurrency. pp. 311–329. Springer
(2013)

12. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: International
Conference on Business Process Management. pp. 66–78. Springer (2013)

13. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured pro-
cess models from incomplete event logs. In: International Conference on Applications
and Theory of Petri Nets and Concurrency. pp. 91–110. Springer (2014)

14. Leemans, S.: Robust process mining with guarantees. Ph.D. thesis, Ph. D. thesis,
Eindhoven University of Technology (2017)

15. Lemon, K.N., Verhoef, P.C.: Understanding customer experience throughout the
customer journey. Journal of Marketing (2016)

16. Schwarz, G., et al.: Estimating the dimension of a model. The annals of statistics
6(2), 461–464 (1978)

17. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In:
International Conference on Business Process Management. pp. 100–115. Springer
(2008)

https://doi.org/10.4121/uuid:da6aafef-5a86-4769-acf3-04e8ae5ab4fe

	CJM-ab: Abstracting Customer Journey Maps using Process Mining

