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Abstract—When event logs are large, the time needed to
analyze them wusing process mining techniques can become
prohibitive. In this paper, using sampling, we aim to reduce the
size of event logs to p-traces, while minimizing the Earth Movers’
Distance (EMD) from the unsampled original event log. We
contribute by formalizing log sampling in a canonical form and
show its link with the EMD, a metric increasingly used for process
mining. Next, we propose three log-sampling algorithms that we
evaluate using a collection of 18 event logs from industry. We
show that our approach largely reduces the EMD compared to
existing sampling strategies. Moreover, we highlight that sampled
event logs with low EMDs tend to have better behavioural quality,
highlighting the generality of our work.

Index Terms—process mining, sampling, earth mover’s dis-
tance, stochastic language

I. INTRODUCTION

By turning event logs into information, process mining helps
organizations to improve their business processes. Process
mining capabilities include discovering process models from
event logs, checking conformance, and performing root cause
analyses, to name a few. Although these compelling capa-
bilities, extracting insights from large event logs is challeng-
ing since some techniques cannot be run using conventional
hardware [1]. When they do, the execution time limits the
number of techniques and parameters that can be tested. It is
a significant limitation given the exploratory nature of most
process-mining projects [2].

We claim that these technical issues can be solved by
working with a limited but representative subset of traces. Not
only does this have the potential to streamline the application
of advanced techniques, but it can also reduce the need for
a manual inspection of event logs. As Leemans et al. state:
“Analyzing the parts of the log that deviate from the model is
tedious: all trace variants are visualised one-by-one, and for
larger event logs, it is infeasible to derive information from this
view” [3]. Thus, sampling event logs would allow a business
analyst to study a limited number of traces and still grasp the
overall behaviour. However, sampling is challenging because
it “quickly introduces under- and oversampled behaviour in
event logs, which can be problematic for frequency-based
algorithms,” according to Knols and van der Werf [4].

We use the term p-traces to denote a subset event log of
size p. In this paper, we aim to return the p-traces that mini-
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Fig. 1. An illustrative event log downsized to 8-traces in two alternatives

ways. The first one is better because it has a lower EMD.

mize the Earth Mover’s Distance (EMD) from the unsampled
event logs. The EMD is a metric that measures the dissimilar-
ity between two multi-dimensional distributions. Incorporating
this distance in the sampling objective allows returning a
general-purpose summary of the event logs useful for various
process mining tasks (e.g., discovery, replay, visualization). In
Fig. 1, we illustrate two p-traces and how the EMD helps to
pick the best one.
We make the following contributions:

1) We formalize the problem of sampling event logs to
p-traces while minimizing the EMD using a linear
programming formulation.

2) Since the problem is NP-hard, we propose three sam-
pling heuristics.

3) We benchmark 9 sampling techniques, for 8 values of
p, using 18 real datasets, and show that our sampling
techniques significantly outperform the existing ones.

4) We highlight the strong correlation between the EMD
and the behavioural quality of event logs.

The rest of the paper is organized as follows. We introduce
the notation in Section II and the related works in Section III.
In Section IV, we formally define the sampling problem, and
in Section V we propose three ways to solve it. In Section VI,
we benchmark several sampling techniques. We provide a
discussion in Section VII and conclude in Section VIII.



II. PRELIMINARIES

We focus on the activity order, so we treat event logs as
multisets as introduced in [5]. Table I provides an overview
of the notation used throughout the paper.

TABLE I

NOTATION
Notation Name Example
L event log L1 = [abc?, abed?, ea)
L* variants L% = [abc, abed, eal
r p-traces LY C Ly and |[LY] =p

1 1 1

stoch(L) | stochastic lang. | stoch(L1) = [abc3,abed?,eat)
eo(L,p) expected occ. eo(L1,2) = [abc%,abcdl,ea%]

Event Log. Let </ be a set of activity names. A trace,
o, is a sequence of activities, i.e., 0 € ™. An event
log, L, is a multiset of traces over &; e.g., L1 =
[{a,b,c)?,{(a,b,c,d)?, (e, a)]. For conciseness, we shorten this
notation as follows: [abc?, abed?, eal.

Variants and Multiplicity. The variant, L*, is the set of
unique sequences from L (also called the support). The
multiplicity of a variant is the number of times it appears
in L (its exponent).

Event Log Size. The size of the event log, |L|, is the total
number of traces it contains, i.e., the sum of the variants’
multiplicity.

p-Traces. Let LP be a subset of L of size p where L? C L,
|LP| = p, and 0 < p < |L|. We use the terms p-traces and L?
interchangeably.

Stochastic Language. The stochastic language expresses
each variant’s probability. Let the stochastic language be a
function, stoch(), that, given L, returns a real-valued multiset
by dividing each variant’s multiplicity by |L|. For instance, the
stochastic language of [abc?, abed?, ea] is [abe? | abed? , eat).

Expected Occurrence. Given a stochastic language and the
number of desired traces, p, the expected occurrence is the
number of times we expect to observe the variants in LP.
More formally, the expected occurrence, eo(), is a function
that, given L and p, returns a real-valued multiset expressing
the expected multiplicity of each variant by multiplying the
stochastic language by p. For instance, if the stochastic lan-
guage is [abc% , abed? eaé], the expected occurrence of LP=3
is [abct, abed? , ea).

III. RELATED WORK

We first position our work and, then we present the existing
sampling techniques.

A. Positioning

In [2], the authors highlight the difference between variant-
based and trace-based sampling. The primer only returns
unique variants, while repetitions of traces are allowed in
trace-based sampling. For instance, the two samplings reported
in Fig. 1 are trace-based because they both contain some
duplicates. Variant-based sampling is particularly relevant for

process mining techniques that do not consider the frequency
of traces, such as the alpha miner [6] or the inductive
miner [7]. By eliminating identical traces, such sampling
strategies can drastically reduce event logs’ size. However,
they are unlikely to produce representative samples. For in-
stance, if a variant happens half of the time but reported only
once in LP, it introduces a critical bias. Because we aim to
discover representative sample traces, we focus this work on
trace-based sampling.

A closely related topic to log sampling is the removal
of outliers traces or activities as presented in [8], [9]. By
removing ‘noises,” these techniques improve the quality of the
discovered process models [8]. However, the ‘noises’ may be a
salient characteristic of the event logs. Therefore, removing all
of them to return only the ‘happy paths’ may not be desirable.
For instance, it could lead the process analyst to draw over-
optimistic conclusions about the discrepancies between event
logs and process models.

Log sampling techniques are also used to approximate
conformance analysis [10], [11]. Without replaying the overall
event logs, it is possible to approximate the replay with
an upper bound [11]. Sampling techniques in this area are
especially relevant, and we report them in the next section
(Section III-B). It is also worth mentioning that the EMD is
used in [3] as a conformance analysis technique.

One sampling strategy is to iteratively grow the number of
traces until an objective criterion is met. Bauer et al. propose
a statistical framework to perform this task using statistical
tests as a stopping criterion [10], [12]. Berti et al. use a similar
sampling strategy that stops when the pair-wise activity depen-
dencies resemble the original event logs [13]. These techniques
appeal because they come with statistical guarantees that the
sampled event logs contain enough information. However, it
comes at the price of not being able to control the number of
desired traces. Moreover, these techniques do not have built-in
functionality to select the most suitable traces; i.e., they do not
aim to select the fewest traces possible. Hence, we consider
that these contributions complement sampling techniques.

The event logs behavioural characteristic is mentioned in
several related works [2], [4], [14]. It is used to designate the
directly-follow occurrence of activities. In particular, Knols et
al. propose several metrics to measure the behavioural quality
of log sampling [4]. These metrics compare the directly-
follow occurrence of activities in the original event logs
from the sampled ones—using a normalization step to make
them comparable. If the difference lies within a predefined
bandwidth, the behaviour is considered well sampled. Oth-
erwise, it is under-or over-sampled. The percentage of truly
sampled behaviour is one of the metrics proposed in [4]. In
the experiment, we report its complement that we named the
ratio of Erroneously Sampled Behaviours (ESB). We favour
the complement because it is a distance function like the
EMD, and it eases the interpretation of the results; i.e., for
both metrics, the lower, the better.

Next, we introduce the existing sampling techniques.



B. Existing Sampling Techniques

The techniques numbered in this section are implemented
in the evaluation section (Section VI).

1) Random: Random sampling consists of drawing p sam-
ples with replacement from the stochastic language. This
approach is described in several works [2], [11], [14], [15].
Using the law of large numbers, it should produce perfect
sampling when p is large enough. It is certainly the most
natural way to sample an event log and, hence, we consider it
as the baseline technique.

2) Stratified Random: Van der Werf et al. suggest treating
each variant as a stratum so that stratified sampling can be
used to sample event logs [14]. The frequency of a specific
variant is also a sorting criterion mentioned in [11], [16]. One
of the challenges linked to applying stratified sampling is due
to the unbalanced nature of the strata. Indeed, it is common to
have few variants with high repetitions and variants appearing
only once in the entire event log. For instance, consider the log
[abed™®, abe®, abt, abede!] and p = 10, the following question
arose: how many traces to pick in each stratum? Using a
multistage approach as described in [14] solves this issue.

3) Variant Biased: As the name suggests, biased sampling
favours a particular type of variant. Sani et al. propose to
rank the traces and extract the top p ones [2]. They propose
various ranking strategies based on the variants’ lengths or
counts. Since our goal is to propose a fair way to select
the traces, biased sampling is unlikely to perform well on
metrics measuring logs’ representativeness, such as the EMD.
Nevertheless, we purposefully added such a technique in the
evaluation section for benchmarking purposes.

4) Behaviour-based: In [2], the authors extract the most
prominent and rarest behaviours based on the directly-follow
occurrences. Each variant receives, respectively, positive or
negative points when they contain such behaviours. The sum
of points gained by a variant is then normalized by its length.
Finally, one can sample the event logs by taking the p variants
that accumulated the maximum number of points.

5) LogRank: In [17], Liu et al. propose a technique inspired
by the well-known PageRank algorithm [18], which Google
used to measure the importance of a webpage by analyzing
its incoming hyperlinks from other web pages. In a process
mining context, the webpages are the variants, and a measure
of similarity between variants replaces the hyperlinks. We can
then return the p most relevant variants.

6) Redundancy Check: Although used in social science to
describe life’s trajectories, the approach described by Gabad-
inho et al. is also relevant in a process mining context [16]. It
consists of ranking the variants by centrality, i.e., the closest
to all the other ones. Then, the most central variants are
iteratively selected. However, before choosing a trace, one
must check that it exceeds a minimum distance threshold from
the already selected variants. Doing this ensures diversity in
the sampling and is what the authors called the ‘redundancy
check.

In the next section, we formalize the representative log
sampling task.

IV. PROBLEM DEFINITION

The goal is to build an L? event log close to the expected
occurrence (Section II). The main challenge is that the vari-
ant’s multiplicity is restricted to integers because a variant
cannot partly exist in an event log. To quote: “only a natural
number of traces can be added to a sample, a trace can only
be added fully or not at all” [14]. In opposition, the expected
occurrence is a real-valued multiset. For instance, if a variant
occurs only once in L it will ineluctably be either under-
or over-represented in LP. In this section, we formulate this
problem that we named the ‘“constant capacitated p-median
problem”. Before presenting it, we introduce two prerequisites:
the Levenshtein distance and the Earth Mover’s Distance.

A. Normalized Levenshtein Distance

The Levenshtein distance, [19], counts the number of op-
erations (i.e., deletions, insertions, and substitutions) needed
to match two sequences. Typically, the distance between abc
and abbd is 2 (e.g., 1 insertion of d, 1 substitution of ¢ — b).
In this work, we normalize the Levenshtein distance by the
length of the longer sequences to get a distance from O to 1,
which reflects existing practice in process mining (e.g., [3],
[20]).

B. Earth Mover’s Distance (EMD)

Informally, the EMD expresses the amount of work needed
to move several ‘piles of dirt’ into various ‘holes’ while con-
sidering the distance between them. More formally, this metric
measures the dissimilarity between two multi-dimensional
distributions. It was introduced by Rubner et al. for image
retrieval in databases [21]. Recently, it was brought in the pro-
cess mining space by Leemans et al., who uses it to measure
the distance between process models and event logs [20]. The
EMD uses two important concepts, namely the cost matrix
and the reallocation matrix.

1) Cost Matrix (c): The cost matrix reports the normalized
Levenshtein distances between all the traces. Since the diago-
nal expresses the distance between a trace and itself, its value
is zero. As an example, the cost matrix of [abe, ab, abedee] is:

¢y abc ab abcedee
abc 0 1/3 1/2
ab 1/3 0 2/3
abedee  1/2  2/3 0

2) Reallocation Matrix (r): The reallocation matrix is a
function that expresses one possible way to transform a
stochastic language into another. Dirt can only move, not dis-
appear. Hence the sum of each row should equal the sum of the
first language, and the sum of columns should equal the second
language. As an illustration, let Ly = [abc®, ab®*, abedee® ]
and L, = [abc® 7, ab®3] be two stochastic languages. Two
examples of reallocation matrices are:

ry abc ab abcdee r abc ab abcdee
abc .5 0 .0 abc .5 0 .0

ab .1 3 .0 ab .2 2 .0
abcdee .1 0 .0 abcdee .0 1.0



Finally, the EMD is the inner product between the cost
matrix (c) and the reallocation matrix (r):

emd([jl,ljg) =c-r (D

Theoretically, the EMD is calculated using the optimum
reallocation matrix, which, in practice, is found using the
minimum cost flow algorithm as well as additional heuristics
(e.g., [22]).

The EMD provides a convenient way to measure the
distance between an event log and one of its downsized
versions. We continue the formulation of the problem to put
the selection of the best traces into the equation.

C. Constant Capacitated p-Median Problem

We propose the constant p-median capacitated problem
inspired by the p-median problem [23] and the capacitated
p-median problem [24]. The goal is to select the subset of
traces that minimize the EMD. We call the selected subset
of traces the representative traces since their purpose is to
represent non-selected traces assigned to them.

Let X be a binary vector of size |L| that indicates which
traces are representatives; i.e., which ones are returned by the
sampling techniques; and let Y be a binary matrix of size | L|?
that maps traces to representatives. Equipped with these two
variables, we can introduce the constant capacitated p-median

problem.
Minimize:
DD Yy 2)
i€l jeL
Subject to:
Z X;=p (Constraint 1)
jeL
Z YVi;=1 Vi (Constraint 2)
JeL
L
Z Yi; < Pl-‘ Vi (Constraint 3)
icL p
Yi;—X; <0 VieLVjel (Constraint 4)
Yi;, X; € {0,1} (Constraint 5)
Where:
P number of representatives to discover

¢;j  cost matrix between traces
Y,;  binary assignment of traces to representatives
X;  Dbinary selection of representatives traces

The function we aim to minimize involves the cost matrix
and the assignment of traces to representatives. It is hence
equivalent to the EMD. The first constraint fixes the number
of representatives to p. The second constraint ensures that all
traces are assigned to one representative. The third constraint
imposes a capacity limit to representative traces proportional
to p. This capacity limit is what makes this approach different

from the existing p-median problems. We round to ceil to
ensure that we have enough capacity for all traces and that
we can hence satisfy the second constraint as well. The fourth
constraint restricts the allocation of traces to representatives,
i.e., trace ¢ can be represented by trace j iff X; = 1. Finally,
the fifth constraint defines that Y and X are limited to binary
values.

Linear programming offers a convenient way to describe
and eventually solve the problem of event log sampling. In
practice, its applicability is limited due to time constraints
since the p-median problem is NP-hard [25]. In practice, the
algorithms halt when the number of variants exceeds a few
hundred variants, which is the case for all the event logs
considered in this paper.

The problem is close to the capacitated p-median problem as
introduced in [24]. However, the difference lies in the fact that
the traces’ capacity is constant—proportionally to the number of
p—so that each representative traces have the same importance.
In the next section, we propose several heuristics that leverage
this singularity.

V. PROPOSED APPROACHES

This section introduces three ways to solve the constant
capacitated p-median problem.

A. Iterative c-min

We named our first approach the iterative c-min described
in Algorithm 1. The ‘¢’ stands for the maximum capacity of
the representatives, i.e., the number of traces a representative
is responsible for, and is a direct application of the second
constraint from the constant capacitated p-median problem.
Once c is defined, the algorithm leverages the cost matrix
(Section IV-B1) to iteratively select the representative trace
with the smallest distance with the ¢ closest neighbourhoods.
Then, these closest neighbourhoods are removed from the cost
matrix before looking for the next best representative. The
process goes on until we get p-traces.

Algorithm 1 Iterative c-min

Input L, n
Output repTraces

> L: event log, n: desired number of traces
> repTrace is a subset of L

1: repTraces + 0

2: cost < EDITDISTANCE(L) > Matrix of costs between traces
3: ¢ < CEIL(LENGTH(L)/n) > Representatives’ capacity constraint
4: while LENGTH(repTraces) < n do

5: minSum <— oo

6: for all trace; € L do

7: closestInd < CMININD(c, cost[trace;]) > c closest indices
8: sumDist < SuM(cost[trace;][closestInd])

9: if sumDist < minSum then

10: minSum < sumDist

11: bestRep < L[trace;]

12: bestClosestInd < closestInd

13: repTraces.ADD(best Rep)
14: for all i € bestClosestind do

15: cost[i][:]. REMOVE(%) > remove rows
16: cost|[:][i]. REMOVE(%) > remove columns
17: L.REMOVE(%)

18: return repTraces




B. Expected Occurrence Reduction (EOR)

We aim to reduce the computation time by extracting ‘easy’
representatives. For instance, if a variant happens half of the
time, we want to get it approximately (due to rounding error)
half of the times in the sampled event log. We propose a
heuristic named the Expected Occurrence Reduction (EOR)
that automatically extracts these representatives.

The EOR uses the expected occurrence defined in Section II
and applies a two-step process. In step 1, it creates an initial
sampling set with the integer part of the expected occurrence.
Then, step 2 completes the initial set (so that |LP| = p)
with the fractional part using any sampling strategies. For
instance, if the expected occurrence is [abd*®, abc®, ea 06
and p = 6, we extract the set [abd*] in step 1. In step 2,
we complete [abd?] with two additional traces drawn from
[abd®®, abc® S, ea fO-°].

By definition, in step 2, the expected occurrence will be
lower than one, i.e., we do not want to return duplicates
in step 2. Ultimately, it means that we can apply variant-
based sampling techniques in step 2 for a problem that is
initially better suited for trace-based sampling techniques.
Interestingly, it corroborates a statement from Sani et al.:
“[variant-based] methods can easily be extended to trace-
based sampling methods”. With EOR, we provide a concrete
way to do it.

C. Iterative c-min (Eucl.)

One of the significant bottlenecks of the iterative c-min
algorithm is the time and space complexity of the cost matrix,
which grows with the number of variants. In this new version
of the algorithm, we avoid this step by working in the
Euclidean space. To work in this space, we count the n-grams
of size one and two; e.g., [aab] becomes [a?, bt, aa', ab']. This
approach is common in the process mining space (see [17]).
Then, we use singular value decomposition (SVD) to reduce
the number of dimensions. Finally, one can apply a nearest
neighbour search to retrieve the c closest variants. The rest of
the algorithm remains unchanged.

VI. EVALUATION

We applied 9 sampling techniques, tested 8 values of p rang-
ing from 5 to 200, on 18 datasets, and repeated the experiment
4 times due to the non-deterministic nature of the sampling
techniques. Altogether, it results in 9-8-18-4 = 5 184 sampling
solutions that we evaluated using the EMD (Section IV-B) and
the ESB (Section III-A). For the ESB, we used the bandwidth
suggested by its authors, i.e., 0.05. Besides the ESB and the
EMD, we also recorded the time needed to complete the
sampling. We set a maximum sampling duration time limit
to 10 minutes because we believe that a longer preprocessing
time would hinder the benefit of sampling in the first place.
We ran the experiment using a machine with 16GB of RAM,
4 CPUs, and a processor speed of 2.8 GHz.

First, we list the 9 sampling techniques along with their
parameters and implementation details. Second, we introduce
the 18 datasets under study. Finally, we present the results.

The code to run the experiment, the results, and a standalone
version of our algorithms, are available online'.

A. Implementation

We implemented six baseline techniques introduced in Sec-
tion IIl, and our three proposed approaches introduced in
Section V.

Some of these strategies are variant-based, so we apply
the EOR to allow duplicate traces in the sampling. Table II
provides an overview of the 9 techniques implemented. While
we introduced them in their respective sections, we provide
some implementation details when needed.

TABLE I
OVERVIEW OF THE COMPARED TECHNIQUES.

Section Abbr. Name EOR
1II-B1 T1 Random

11-B2 T2 Variants stratified v
111-B3 T3 Variants biased

111-B4 T4 Behaviour-based v
-B5 TS5 LogRank v
1II-B6  T6 Redundancy Check v
V-A T7 Iterative c-min

V-B T8 Iterative c-min (EOR) Vv
V-C T9 Iterative c-min (Eucl.) Vv

T1 is drawn using random sampling with replacement. T2
is a random sampling leveraging the EOR, which acts equiv-
alently to the stratified sampling introduced in Section III-B2.
T3 is a biased sampling technique that is set to return the
most frequent variants. T4 is a behaviour-based sampling that
requires choosing which are the most prominent and rarest
behaviours. We retrieve, respectively, the first and last tertiles
of the behaviours. T5 leverages the page rank algorithm and
requires a way to measure the distance between variants. We
use n-grams of sizes one and two and the euclidean distance to
reflect the original implementation [17]. Moreover, to sample
under the 10 minutes threshold, we limited the maximum num-
ber of neighbourhoods to 200 using a K-Nearest Neighbour
(KNN) algorithm. For T6, we measure the centrality using the
cost matrix (of the normalized Levenshtein distances) and set
the min distance for a variant to be considered to 0.05.

The last three implementations are our proposed approaches
from Section V. T7 and T8 also use the cost matrix. T8 aims
to reduce the execution time of T7 by applying the EOR
first. Finally, T9 implements the iterative c-min that avoids
the need for a cost matrix by working in Euclidean space. It
uses n-grams of size one and two reduced to 64 dimensions
through SVD and leverages an efficient implementation of the
k-nearest neighbour algorithm, namely Faiss [26]. Note that
we do not leverage the CPU or approximation capacities of
the Faiss library, which could further reduce the execution
time.

Thttps://github.com/gaelbernard/sampling



B. Datasets

We sampled 18 mainstream datasets from the process min-
ing discipline to cover various log characteristics. We provide
an overview of the datasets in Table III. In the same table,
we report the percentage of traces covered by the 20 most
frequent variants because we believe that it provides a good
indication of the complexity linked to the sampling task (the
less coverage, the more complex the task).

TABLE III
DATASETS OVERVIEW.

dataset #events #trace  #variants  20cov*
1 BPI2011 [26] 150291 1143 981 14%
2 BPI2012 [27] 262200 13087 4366 53%
3 BPI2013_1 [28] 2351 819 182 74%
4 BPI2013_2 [28] 6660 1487 327 73%
5 BPI2013_3 [28] 65533 7554 2278 54%
6 BPI2015_1 [29] 38944 937 916 4%
7 BPI2015_2 [29] 33373 645 644 3%
8 BPI2015_3 [29] 44801 1087 1032 7%
9 BPI2015_4 [29] 34848 787 781 3%
10  BPI2015_5 [29] 43896 892 879 4%
11 BPI2017 [30] 1160405 31509 14972 23%
12 BPI2018 [31] 2514266 43809 28923 15%
13 BPI2020_1 [32] 36796 6886 89 97%
14  BPI2020_2 [32] 86581 7065 1478 53%
15 BPI2020_3 [32] 18246 2099 202 82%
16  BPI2020_4 [32] 72151 6449 753 64%
17 BPI2020_5 [32] 56437 10500 99 98%
18  Sepsis [33] 15190 1049 845 17%

*percentage of traces covered by the 20 most frequent variants.

C. Results

In Fig. 2, we report the EMDs for the BPI2020_2 dataset.
Our proposed approaches T7 and T8 return the subset of traces
that minimize the EMD the most. Note that we cannot distin-
guish them in Fig. 2 they achieve the same EMD. Although
we made this type of chart for the 18 datasets (available with
the code), we cannot show them in this paper due to space
constraints. We hence turn to alternatives representations.

T1. Random
T2. Variants stratified
T3. Variants biased

—e— T7. lterative c-min
-+ T8, lterative c-min (EOR)
—&— T9. lterative c-min (Eucl.)

T4. Behaviour-based
~¥— T5. LogRank
—#— T6. Redundancy check
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Fig. 2. Detailed results for the BPI2020_2 dataset.

In Fig. 3, we report the percentage change compared to the
baseline T1. The first line of Fig. 3, T1, is not visible because
it reports the difference with itself. As expected, the biased
approach T3 performs poorly. Contrastingly, the iterative c-
min samplers (T7, T8, and T9) stood out with a median

T1. Random '
T2. Variants stratified

T3. Variants biased }

T4. Behaviour-based

T5. LogRank

technique

T6. Redundancy check
T7. Iterative c-min
T8. lterative c-min (EOR)

TO9. Iterative c-min (Eucl.)

-50% 0%
EMD

50%

Fig. 3. EMD percentage change compared to T1.

reduction of a least 25% percentage change. Additionally, T7
and T8 perform slightly better than T9.

In Fig. 4, we report the EMD for 4 out of the 9 techniques to
increase the readability. We choose to disregard five techniques
for the following reasons. On average T1, T3, and T6 produce
sampled event logs with higher EMD (visible in Fig. 3).
Moreover, we do not display T7 and T8 because of the missing
values due to getting over the 10 minutes threshold limit. In
Fig. 4, it can be seen that the range of the EMD is dataset-
dependent. For instance, an EMD below 0.35 for BPI2011
is good, while it would be a high EMD for BP12020_1. The
inherent complexity of the datasets explains the difference. We
also note that T9 performs well consistently, while the other
approaches fluctuate considerably by dataset. Also, the larger
the p, the lower the EMD. Finally, BPI2020_1 and BPI12020_5
seem to be the only datasets where the EMD approaches zero.
Looking back at Table III, it is not surprising since these
datasets have a low number of variants, and 20 traces cover
more than 97% of the traces.

Similar to how we displayed the EMD in Fig. 3, Fig. 5
reports the ESB (introduced in Section III-A). Although these
metrics are different, the performance is comparable. Inter-
estingly, T9 is slightly better compared to T7 and T8. Also,
note that T4, designed to perform well on such behavioural
metrics, has a more negligible improvement than the iterative
c-min suites (T7, T8, T9).

We investigated further the correlation between the EMD
and the ESB using Pearson’s correlation tests. The correlations
are reported below in APA style for each dataset:

1) r(286) =.75,p < .01 10) r(286) = .82,p < .01
2) r(281) = .83,p < .01 1) r(222) =.77,p < .01
3) 7(286) = .86,p < .01 12) r(217) = .62,p < .01
4) r(286) = .76,p < .01 13) r(286) =.92,p < .01
5) 7(286) = .69,p < .01 14) r(286) = .88,p < .01
6) 7(286) = .74,p < .01 15) r(286) = .90, p < .01
7) r(286) = .88,p < .01 16) r(286) =.90,p < .01
8) 7(286) = .76,p < .01 17) r(285) = .91,p < .01
9) r(286) = .82,p < .01 18) r(286) = .81,p < .01

By dataset, the maximum number of observations is 288
(8 p-values - 9 techniques - 4 repetitions), from which we
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Fig. 4. EMD results. Only four techniques (T2, T4, T5, T9) are shown for purposes of readability.
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T2. Variants stratified E | experiments that exceeded the 10 minutes duration threshold
T3. Variants biased — in Fig. 6, which can be summarized in three groups. First,
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Fig. 6. Sampling execution time. The median is reported.

remove 2 to get the degree of freedom, i.e., the maximum
degree of freedom is 286. However, the values reported do
not always reach 286 because some experiments exceeded the
10 minutes threshold. As can be seen, the correlation is very
strong (> 0.8) for 11 datasets and strong (> 0.6) for the 7
remaining ones. These high correlations highlight that these
two metrics are closely related; i.e., improving one most likely
improves the other as well.

seconds. Second, TS and T9 work in Euclidean space and
leverage feature reduction techniques (i.e., SVD) and advanced
indexing techniques (i.e., KNN). The median execution time
of these techniques is below 0.4 seconds. Third, T6, T7,
and T8 spend a significant time building the cost matrix.
Consequently, these techniques could not complete within
the 10-minutes threshold in approximately 11% of the cases.
Interestingly, the iterative c-min with EOR (T8) reduces the
median execution time of T7 by approximately 28%—from 7.4s
to 5.3s median time-without impacting the sampling quality
(visible in Fig. 3 and Fig. 5). Hence, we suggest that T8 is
always preferable over T7. However, for event logs composed
of many variants, this would not prevent reaching the threshold
since the EOR does not reduce the time needed to compute
the cost matrix.

In the next section, we discuss these results as well as the
limitation of the experiment.

VII. DISCUSSION

We demonstrated that the EOR is an effective heuristic to
reduce the computation time and allows turning a variant-
based sampling into a trace-based one, i.e., allowing repetitions
when a sampling technique is initially not designed to return
them. However, when the number of unique variants exceeds
few thousand, the time and space needed to build the cost
matrix become prohibitive and applying the EOR does not
solve the issue. Hence, as a rule of thumb, we suggest using
sampling technique T8 when the number of unique variants is
below one or two thousand and applying T9 for larger event



logs. Note that the execution time of T9 could be improved
by reducing the number of dimensions or approximating the
KNN search. Nevertheless, the impact of such optimization is
out-of-scope of this paper.

Similarly, some metrics and algorithms require various
parameters. Among others, we can mention the bandwidth of
the ESB, the threshold for the redundancy check or the number
of prominent are rare behaviours to consider in the behaviour-
based sampling. We implemented the algorithms and metrics
with due diligence as described by the authors and choose the
set of parameters that we deemed appropriate for the task at
hand. However, the search space of all possible parameters
makes an exhaustive grid search inconceivable. Nonetheless,
given the extensive number of experiments reported in this
work, we are confident about the conclusion drawn in the
experimental section.

VIII. CONCLUSION

We benchmarked several datasets (18), techniques (9), sam-
pling sizes (10) and repeated the experiment multiple times
(4). With the extensive set of experiments and the fact that we
use two distinct evaluation criteria, we confidently claim that
the proposed iterative c-min suite (T7, T8, and T9) discovers,
in general, more representative sample event logs.

Downsizing event logs in a representative way can stream-
line the exploratory phase of process mining projects. In fact,
not only can it help approximate time-consuming algorithms
(e.g., conformance checking), but it can also present a fair
summary to a process mining analyst by answering questions
such as “what are the 20 traces that best summarize the event
logs?” Thus, we believe that the sampling of event logs can
play an important role in extracting insights from complex
event logs.
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