
Technical Report
“Cut to the Trace!”

Gaël Bernard, Arik Senderovich, and Periklis Andritsos

University of Toronto, Faculty of Information, Toronto, Canada
gael.bernard@utoronto.ca

arik.senderovich@utoronto.ca

periklis.andritsos@utoronto.ca

This technical report extends the customer journey partitioning experiments from our publication:

G. Bernard, A. Senderovich, and P. Andritsos, “Cut to the trace! process-aware partitioning of long-
running cases in customer journey logs,” in Advanced Information Systems Engineering, M. La Rosa,
S. Sadiq, and E. Teniente, Eds. Cham: Springer International Publishing, 2021, pp. 519–535

The report is composed of three parts. First, we test the performance of the partitioning techniques with
various event logs. Second, we measure the scalability of the approaches using event logs of varying sizes.
Third, we conclude the report. The implementation of the three methods, the experiment from the original
publication, and the ones from this technical report are available online1.

1 Performance Analysis

In our publication, we generated 10 customer journeys by stacking 100 traces generated from a known process
model. The experiment’s goal was to measure the partitioning techniques’ ability to retrieve the original 100
stacked traces of each journey without prior knowledge of the process model used to generate the journeys.
We simulated the time between events using a Poisson process and added a delay when two events belong to
two distinct process instances. The smaller the delay, the harder it is to retrieve the original partitioning.

In this technical report, we extend this experiment by using 10 process models defined in Leemans’ thesis
[2]. From these process models, Leemans produced event logs containing 1024 traces2. The key characteristics
of the 10 process models are described in Table 1. We also depicted the first process model, seed 1, in Fig. 1.

Table 1. Key characteristics of the 10 process models.

Seed #Activities #Xor #Parallel #Sequential #Loops Simplicity [3]
1 32 5 4 4 1 0.642
2 32 6 3 6 2 0.670
3 32 6 3 7 3 0.681
4 32 0 3 5 3 0.811
5 32 2 4 7 0 0.659
6 32 3 5 4 0 0.670
7 32 4 5 3 1 0.630
8 32 1 5 10 3 0.786
9 32 5 5 5 2 0.686
10 32 0 5 7 3 0.756

1 https://github.com/gaelbernard/cjp
2 Available at: https://data.4tu.nl/articles/dataset/A_collection_of_artificial_event_logs_

to_test_process_discovery_and_conformance_checking_techniques/12704777 under ’1 - scalabil-
ity/generatedLogs/round 5 treeSeed *.xes.gz’



Fig. 1. One of the ten process models, seed 1, used to generate the event logs.

2



0.05 0.1 0.2 0.5 1 2 5

Delay

1

2

3

4

5

6

7

8

9

10

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

0.5
0.7

0.9

GCPAP LCPAP TAPSeed

Au
c

Au
c

Au
c

Au
c

Au
c

Au
c

Au
c

Au
c

Au
c

Au
c

Fig. 2. AUCs of the three approaches

3



We borrowed these 10 event logs that we transformed into customer journey logs by stacking traces
separated with 12 fixed delays and a Poisson distribution with a rate, λ, fixed to 1 as described in the
original paper [1]. Altogether, we produced 120 customer journey logs that we partitioned using TAP (Time
Aware Partitioning), GCPAP (Global Context Process-Aware Partitioning), and LCPAP (Local Context
Process-Aware Partitioning).

The results in terms of Area under the Curve (AUC) are shown in Fig. 2. On 96 occasions, GCPAP
outperforms the two other approaches, while LCPAP gets the best AUC 20 times. There are 4 instances
where TAP achieved the highest AUC.

If the delay between inter-case times is almost constantly higher than the inter-event times, using more
sophisticated partitioning methods is overkill, which is well represented with a delay of 5 in Fig. 2. In fact,
when the Poisson distribution rate is set to 1 and the delay is 5, the probability that an inter-event time

becomes larger than the delay is only 0.31% (f(d, λ) = λxe−λ

d! ), which explains the good performance of the
three techniques under this particular delay.

Interestingly, we do not see any correlation between the performance manifested by the AUC and the
process model’s complexity. For instance, looking at Fig. 2, the partitioning of journeys is more challenging
in seed 8 since the AUCs are lower, while seed 8 is one of the most straightforward process models according
to metric borrowed from [3].

In Fig. 3, we plotted the ROC curves for the most challenging delay, i.e., when it is set to 0.05. With
such a small delay, TAP always performs a bit better than a random guest. On rare occasions, GCPAP
and LCPAP perform worst than a random guest, e.g., seed 1. However, most of the time, these approaches
outperform a random guest and TAP.

Interestingly, in seed 6, GCPAP and LCPAP achieve spectacular AUCs of, respectively, 0.88 and 0.95. We
explain this because, for this process model, the traces always start and end with the same activities. In this
case, a trace partitioning technique is typically not required. It is the only process model that enforces such
static activities at the beginning or the end of the trace. Still, we highlight that these excellent AUCs were
obtained without having any information about the underlying process model.

In the next section, we discuss the scalability of the three partitioning techniques.

2 Scalability

To measure the three approaches’ scalability, we leverage the same collection of datasets from [2]. In the
previous section, we used round 5. Altogether, there are 10 rounds of increasing complexity and size, each
containing 10 event logs. Due to time constraints, we limited the scalability test to the first seventh rounds.
We described them in Table 2.

Table 2. Characteristics of the event logs used for the scalability evaluation.

Round #Event Logs #Activities
per event logs

#Cases
per event logs

Avg. #events
per event logs

1 10 2 4 6.8
2 10 4 16 60.4
3 10 8 64 501.8
4 10 16 256 3’282.8
5 10 32 1’024 26’316.0
6 10 64 4’096 154’509.2
7 10 128 16’384 1’387’570.0

The machine used for the experiment has 16GB of RAM, and 4 CPUs. We did not use GPU, which
could speed up the neural network-based partitioning, i.e., GCPAP. The parameters for the GCPAP remain
identical to the ones used in the paper, i.e., w to 10 (size of window activities), n to 64 (number of units in
LSTM and dense layers), and the number of epochs to 20.

4



TP
R

Seed 1, Delay: 0.05

GCPAP (AUC: 0.47)
LCPAP (AUC: 0.46)
TAP (AUC: 0.52)

Seed 2, Delay: 0.05

GCPAP (AUC: 0.79)
LCPAP (AUC: 0.72)
TAP (AUC: 0.53)

Seed 3, Delay: 0.05

GCPAP (AUC: 0.75)
LCPAP (AUC: 0.56)
TAP (AUC: 0.53)

Seed 4, Delay: 0.05

GCPAP (AUC: 0.88)
LCPAP (AUC: 0.95)
TAP (AUC: 0.53)

Seed 5, Delay: 0.05

GCPAP (AUC: 0.66)
LCPAP (AUC: 0.53)
TAP (AUC: 0.53)

Seed 6, Delay: 0.05

GCPAP (AUC: 0.57)
LCPAP (AUC: 0.63)
TAP (AUC: 0.52)

Seed 7, Delay: 0.05

GCPAP (AUC: 0.68)
LCPAP (AUC: 0.60)
TAP (AUC: 0.53)

Seed 8, Delay: 0.05

GCPAP (AUC: 0.57)
LCPAP (AUC: 0.42)
TAP (AUC: 0.51)

Seed 9, Delay: 0.05

GCPAP (AUC: 0.83)
LCPAP (AUC: 0.76)
TAP (AUC: 0.53)

Seed 10, Delay: 0.05

GCPAP (AUC: 0.74)
LCPAP (AUC: 0.83)
TAP (AUC: 0.53)

TP
R

TP
R

TP
R

TP
R

TP
R

TP
R

TP
R

TP
R

TP
R

TP
R

TP
R

TP
R

FPRFPR

FPRFPR

FPRFPR

FPRFPR

FPRFPR

Fig. 3. ROC curves for the delay 0.05

5



The scalability test is visible in Fig. 4. Note the y-axis is using a log scale. Since TAP only consists of
looking for the largest time delta between events, it is not surprising that this approach can operate within
a fraction of seconds, even for heavy event logs. What can be noted is that the LCPAP approach can also
return partition in a reasonable amount of time. For instance, for the largest event logs, which contain 2.02M
events, the runtime of LCPAP is 5.5 seconds. The runtime of GCPAP is clearly much slower by a factor
of 700: it took a little bit over an hour (3850 seconds) for the same dataset. Unlike TAP and LCPAP, one
can arguably state that such a long run time does not allow for online exploration of event logs. However,
regarding the journeys partitioning improvement highlighted in the first section of this technical report, we
believe that LCPAP has considerable potentials worth the run time.

0K 200K 400K 600K 800K 1000K 1200K 1400K 1600K 1800K 2000K
#events

0.001

0.01

0.1

1

10

100

1'000

10'000

Ex
ec

ut
io

n 
tim

e 
- s
ec
on
ds

1 hour

1 minute

GCPAP LCPAP TAP

1 second

Fig. 4. Execution time of the three approaches

3 Conclusion

We have shown in this report that the excellent performance obtained by our two novel approaches for
partitioning a customer journey, namely LCPAP and GCPAP, stands for various and independent synthetic
event logs. We have also shown that the execution time overhead of LCPAP compared to TAP is limited,
while it is quite significant for GCPAP.

References

1. G. Bernard, A. Senderovich, and P. Andritsos, “Cut to the trace! process-aware partitioning of long-running cases
in customer journey logs,” in Advanced Information Systems Engineering, M. La Rosa, S. Sadiq, and E. Teniente,
Eds. Cham: Springer International Publishing, 2021, pp. 519–535.

2. S. Leemans, “Robust process mining with guarantees,” Ph.D. dissertation, Mathematics and Computer Science,
May 2017, proefschrift.

3. J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “Quality dimensions in process discovery: The importance
of fitness, precision, generalization and simplicity,” International Journal of Cooperative Information Systems,
vol. 23, no. 01, p. 1440001, 2014.

6


