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Abstract. Customer journeys are recordings of customer interactions
with organizational information systems. These interactions are often
recorded into so-called customer journey logs. Customer journeys often
correspond to long-running and flexible traces that may temper the use of
process analytics techniques such as process mining. A common method
to make long-running traces suitable for process mining algorithms is
to partition them at the largest temporal differences between consecu-
tive events. However, these techniques ignores process context that jour-
neys are often influenced by. In this work, we propose a probabilistic
framework that generalizes previous techniques and introduces two novel
process-aware partitioning approaches. The first method is inspired by
the directly-follows relation, a predominant abstraction in process dis-
covery. The second approach leverages LSTMs, a type of Neural Net-
works that learn long-term dependencies in sequences. We show that
both approaches outperform existing time partitioning methods on both
synthetic and real-world customer journey data.

Keywords: Customer journey analysis · Process mining · Trace
partitioning

1 Introduction

A customer journey is an abstract representation of all interactions between
a customer and an organization. In the banking industry, a journey involves
interactions with tellers, website logins, money withdrawals, etc. Describing and
understanding these customer pathways is referred to as customer journey ana-
lytics [20]. A recent study reveals that almost half of information technologies
and business leaders consider customer journey analysis to be their top priority
[11]. Better understanding of customers and deeper insights into their behav-
ior implies improvement in quality-of-service. These insights are expected to
increase customer satisfaction which, ultimately, is positively linked with rev-
enue [20]. For these reasons, customer journey management is an essential topic
in information systems management.
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Customer journey logs are sequential databases that contain transactions of
customer interactions (aka ‘touchpoints’) with information systems (e.g., Cus-
tomer Relationship Management systems). Due to the similarity between cus-
tomer journey logs and event logs, process mining was shown to be a promising
discipline for performing customer journey analysis [4]. By viewing a customer
journey as a trace of events, one can immediately apply process mining tech-
niques and gain insights into customer journeys.

Fig. 1. Illustration of a customer journey composed of 198 events

Figure 1 illustrates a sample of a customer journey produced by a single
customer browsing an online retail store. Clearly, after several years of customer
interactions, one would expect to have a large number of events per customer
(in our case, 198 events in 5 years). On the one hand, the flexibility offered to
customers to consume a company’s services accommodates their needs. On the
other hand, these unique aspects of customer journeys, namely long-running
and flexible cases, may result in several challenges for traditional process mining
techniques.

Firstly, long-running cases cause process discovery algorithms to produce
overly complex (spaghetti-like) process models, since they consider too many
process variants [9]. Secondly, process discovery algorithms such as the inductive
miner, [19], may overgeneralize and produce models that allow for events to
happen in any order (flower models) [26]. In both cases, the resulting process
models do not provide useful insights [9,26].

An approach that led its authors to win the 2011 BPI challenge, [13], con-
sists of partitioning long traces into shorter ones by cutting at the largest time
differences between events [8]. We shall refer to this approach as time-aware par-
titioning (TAP). The main limitation of TAP is that it relies solely on the time
gap between events and disregards any process context. In our running example,
the activity ‘Checkout’ shortly follows the activity ‘Add to Basket’. Occasionally,
an unexpected delay may occur between the two activities, e.g., due to customer
characteristics. In such cases, TAP would assign the two closely related events
to two distinct cases, causing a trace to start with the activity ‘Checkout’, which
does not make sense from a business process standpoint.

In this paper, we use contextual information when cutting long-running
traces. Specifically, we propose two novel process-aware partitioning approaches
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that build upon a probabilistic view of the partitioning problem, while taking
process context into account. The first method, namely local context process-
aware partitioning (LCPAP) is based on local dependencies between event labels.
Similarly to the directly-follows relation that often stars in process mining algo-
rithms (e.g., [28]), LCPAP employs the fact that pairs of directly following activi-
ties will present (on average) shorter temporal gaps. Our second approach, global-
context process-aware partitioning (GCPAP), leverages the strength of long-short
term memory (LSTM) Neural Networks to better account for global context
when partitioning customer journeys. The main contribution of the paper is
threefold:

1. We formalize the long-running trace partitioning problem.
2. We provide a general probabilistic framework for temporal trace partitioning

and show that our framework subsumes existing approaches.
3. We propose two novel process-aware approaches and demonstrate their effec-

tiveness by conducting an extensive empirical evaluation.

The rest of the paper is organized as follows. Section 2 defines the problem of
trace partitioning. Subsequently, Sect. 3 formalizes a probabilistic framework for
customer journey partitioning and instantiates the framework using two novel
approaches. Section 4 evaluates the framework using synthetic journey logs and
show the relevance of the approach by demonstrating its application on real-life
customer journey data. In Sect. 5, we discuss the limitations of our approach,
while Sect. 6 and Sect. 7 present related work and conclude the paper.

2 The Problem of Customer Journey Partitioning

In this section, we pose the problem of customer journey partitioning (CJP).
We refer to long-running traces as customer journeys, however, our problem
and approaches for solving it are applicable to general event logs. We start by
providing a model for customer journey data, proceed by motivating CJP using
our running example and conclude the section with the CJP problem statement.

2.1 Customer Journey Data

Let E , I, A, and T be the universes of customer events, customer identifiers,
activities, and timestamps, respectively. We assume that a customer event e ∈ E
comprises three elements e = (i, a, t) such that,

– i ∈ I is a unique customer identifier,
– a ∈ A is a customer activity associated with the event,
– t ∈ T is a timestamp associated with the event.

A customer journey Ji is a sequence of events sorted by time and associated
with customer i. Formally, let E∗ be the set of all finite sequences over E . Then,
a journey Ji ∈ E∗ of length n can be written as a sequence of triplets,

Ji = 〈(i, a1, t1), . . . , (i, an, tn) : t1 ≤, . . . ,≤ tn〉.
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For convenience, given an event e we let i(e), a(e), and t(e) be the identifier, the
activity, and the timestamp associated with event e. A customer journey log LJ
is a set of customer journeys.

2.2 Customer Journey Partitioning

Fig. 2. Heuristic net discovered
on real customer journey data.

Motivation. We return to the journey log in
our running example (Fig. 1). One searches for
a way to cut the 198 events to form meaningful
cases. Without cutting the log, applying pro-
cess mining techniques to LJ would result in a
model that represents all customer interactions
rather than customer journeys. We demonstrate
this issue by running a discovery algorithm on
a real-life customer journey log describing cus-
tomers’ interaction with a service desk (dataset
used in the evaluation in Sect. 4.3). We observe
that the resulting model, depicted in Fig. 2 is
a ‘spaghetti’ model, which is far from useful if
we wish to perform cycle time prediction or dis-
cover a variant that customers go through when instantiating the process. Moti-
vated by the need for useful models, we arrive at the problem of customer journey
partitioning.

Problem Formulation. As our first step towards formulating the problem,
we define a journey partitioning function, χ : E∗ → N

+∗ to be a mapping that
takes customer journeys and returns finite tuples of indices χ(Ji) with each
index corresponding to the end event of a case in journey i. The order between
the elements of the tuple respects the temporal order within the journey, i.e.,
given a partition χ(Ji) = (i1, . . . , ik), we get that tik−1 ≤ tik . Thus, given a
journey Ji = 〈(i, a1, t1), . . . , (i, an, tn) : t1 ≤, . . . ,≤ tn〉 and a partition χ(Ji) =
(i1, . . . , ik) we can derive k cases,

σ1 = 〈(i, a1, t1), . . . , (i, ai1 , ti1)〉
σ2 = 〈(i, ai1+1, ti1+1), . . . , (i, ai2 , ti2)〉,

. . .

σk = 〈(i, aik−1+1, tik−1+1), . . . , (i, aik , tik)〉. (1)

For example, the partition χ(J1) = (4, 198) transforms the journey from
Fig. 1, J1 = [(P, 0), (F, 1), (P, 4), (B, 5), (C, 10), ...], into two cases: σ1 =
[(P, 0), (F, 1), (P, 4), (B, 5)] and σ2 = [(C, 10), ...]. We denote Lχ(Ji) the set of
cases {σ1, . . . , σk} that results from applying χ to Ji. We assume the existence
of a true partitioning of the journey log, which we are aiming to reconstruct.
Different instances of χ can be viewed as approximations of the true partitioning.
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Next, we let Π(Lχ(Ji)) denote the loss associated with wrong case recon-
struction from customer journey i. The customer journey partitioning (CJP)
problem is to minimize the total loss given χ and a journey log LJ defined as,

Πχ(LJ ) =
n∑

i=1

Π(Lχ(Ji)). (2)

There are various options for measuring the loss between partitions. We shall
provide some of those distance functions when instantiating our approach in
Sect. 4.1.

3 Probabilistic Customer Journey Partitioning

Solving CJP directly by minimizing Πχ(LJ ) would require case labeling of the
journey events, which is unrealistic to obtain in many practical scenarios. In this
paper, we circumvent this challenge by introducing a probabilistic framework
for CJP that would allow us to approximate the solution to the partitioning
problem. The key in our solution is the ability to accurately identify that a case
ends after a given event.

Formally, given an event e ∈ E , let E(e) be an indicator that equals 1 if e
is a case-ending event, and 0 otherwise. Thus, we define p(e) = P (E(e) = 1) as
the probability that e is a case ending event. The foundation of our approach
lies in the ordering of the probabilities for events to be case ending events and
choosing the top K events1 to set the cuts. Below, we provide three approaches
that instantiate the above.

3.1 Time-Aware Partitioning (TAP)

Time-aware partitioning (TAP) assumes that journey cuts correspond to longer
inter-event durations. TAP is used as the standard state-of-the-art way to parti-
tion long traces when preprocessing event logs (see [8]). A time partitioning algo-
rithm cuts journeys at the longest time differences between events. To quote [8]:

“One can use a parameter, say δ days, to demarcate the boundaries between
process instances. Two events or event sequences with a time period between
them greater than δ fall under two process instances.”

We will formalize the above using our probabilistic framework by defining the
dependence between E(e) and observed inter-event times.

For a given journey of customer i, Ji, let λi = (λi,1, . . . , λi,ni
) be the sequence

of inter-event times with ni being the number of events in the journey, i.e.,
λi,1 = t2 − t1, λi,2 = t3 − t2, . . . and so on. For example, if our journey log
has one journey, J1 = [(P, 0), (F, 1), (P, 4), (B, 5), (C, 10), ...], the sequence λi is
[1, 3, 1, 5, ...]. When we refer to some event e in the log, we denote λe the inter-
event time between e and the next observed event in the same journey. If e is
1 K is a hyper-parameter that controls for the number of cases in the journey log.
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the last event in the journey, we set λe = ∞ to denote that the next event will
not be occurring (as e is last); note that we only consider completed journeys.

Further, we assume that the inter-event time Λe (which is realized by λe) is
a random variable that comprises a baseline inter-event time Λ0 and a random
gap Δ that exists only if the case ends after e,

Λe =

{
Λ0, for E(e) = 0
Λ0 + Δ, for E(e) = 1

Let δ be the expected value of Δ, i.e., EΔ = δ and let p(e) = P (E(e) = 1). From
the law of total expectation we get that

EΛe = p(e)(E(Λ0 + Δ)) + (1 − p(e))EΛ0

= p(e)(EΛ0 + EΔ) + (1 − p(e))EΛ0 = EΛ0 + p(e)δ.
(3)

Therefore, we get that

p(e) =
EΛe − λ0

δ
, (4)

with λ0 = EΛ0 > 0 being a positive constant. This result allows us to compare
two observed events e, e′ and decide which one has the higher likelihood to end
a case.

Consider two events in the journey log, e and e′, such that the gap of the
former is greater than the gap of the latter, namely λe > λ′

e. Since every event
e corresponds to a single random variable Λe and a single observation λe, our
best estimate of EΛe is ÊΛe = λe. Therefore, we get that

p̂(e)

p̂(e′)
=

λe − λ0

λe′ − λ0
> 1, (5)

since λ0 > 0 and λe > λe′ > 0. Therefore, ordering the events according to
their corresponding inter-event times (including ∞ for journey ending events)
and cutting after the top K events on the list, guarantees that we are selecting
the events with highest (estimated) chances of being case ending events.

One of the main drawbacks of TAP is that it does not take into account
any contextual information. Returning to our example, although the activity
‘Checkout’ cannot happen before the activity ‘Add to basket’, TAP might insert
a cut. In fact, TAP is sensitive to extreme values drawn from Λ0, e.g., if the time
between two consecutive events that belong to the same case is unexpectedly
long, the two events might end up in two separate cases according to TAP.

In Fig. 3, we provide an illustrative customer journey that we use to apply
the partitioning techniques. Taking this figure, TAP would partition at: ∞ (#10,
journey ending events), 10 (#4), 5 (#7), and 4 (#5); respectively producing the
cuts TAP4, TAP1, TAP3, and TAP2. Figure 3 illustrates that we cannot retrieve
any of the ground truth by cutting based on the inter-event times. In the next
part, we provide two approaches that take contextual information into account
when cutting long-running traces.
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Fig. 3. Illustration of the three CJP techniques.

3.2 Local Context Process-Aware Partitioning (LCPAP)

Unlike TAP that only observes temporal differences, our second solution, namely
LCPAP, employs the directly-follows relation between pairs of activities, and
their inter-event times to decide on the cut. For LCPAP, we refine the definition
of a case ending event by letting it depend on the pair of activities that corre-
sponds to an event e and to its direct follower e′ (both events are part of the
same journey).

Let d(e) ∈ A×(A∪{⊥}) be the directly follows relation such that d(e) = (a, b)
with a = a(e) and b = a(e′) and e′ directly follows e. Note that b =⊥ implies that
e is a journey ending event. We assume that the inter-event time, Λe, depends
not on the event itself, but on the pair (a, b). Formally, we write it as,

Λ(a,b)
e =

{
Λ
(a,b)
0 , for E(e) = 0, d(e) = (a, b)

Λ
(a,b)
0 + Δ, for E(e) = 1, d(e) = (a, b)

(6)

This implies that the end of a case is dictated by Δ, as before, but its stan-
dard duration Λ0 is a function of the activity pair, (a, b). Repeating a similar
derivation as in Sect. 3.1, we get that

pa,b(e) = P (E(e) = 1, d(e) = (a, b)) =
EΛ

(a,b)
e − λa,b

0

δ
. (7)

Note that in the equation above, we added contextual information regarding the
directly follows relation associated with event e, which was not used by TAP.

We estimate pa,b(e) by assuming that all baseline durations λ
(a,b)
0 are identical

and equal to some λ0. Therefore, it is enough to estimate EΛ
(a,b)
e by simply

averaging the inter-event times, namely {λi,j | aj = a, aj+1 = b}. We denote this
average by λ̄(a,b) and for any pair of events e, e′ we write,

p̂a,b(e)

p̂a,b(e′)
=

λ̄(a,b) − λ0

λ̄(c,d) − λ0
, (8)

with (a, b) and (c, d) being arbitrary pairs of activity labels of e and e′, respec-
tively. Hence, given a pair of events, it is enough to observe the average durations
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of their activity labels λ̄(a,b) to determine their ordering. Note that for b =⊥,
we define λ̄(a,b) = ∞ and thus we shall always have a cut after a journey ending
event.

Subsequently, we perform a cut after the top K observed average durations
of the pairs that correspond to the events. For instance, in Fig. 3, we get the
λP,C = [1, 1, 4, 2] (event IDs #1, #3, #5, and #9). Thus, we get that λ̄(P,C) = 2.
The four largest values are: ∞ (#10, journey ending events), 5.5 (#2, λ̄(C,P )),
5.5 (#4, λ̄(C,P )), and 5 (#5, λ̄(F,P )); respectively producing the cuts LCPAP4,
LCPAP1, LCPAP2, and LCPAP3 visible in Fig. 3. Two out of the four cuts are
correct with respect to ground truth.

3.3 Global Context Process Aware Partitioning (GCPAP)

Local context PAP considers the directly follows relation between a pair of
events. As the name suggests, GCPAP generalizes the notion of context by
adding: (1) w activities preceding the current event e, (2) w time inter-event
times preceding event e, (3) activity a(e) that is associated with e, (4) w activi-
ties following e, and (5) w inter-event times following e. If there are less than w
events that precede or follow e, we take the actual number of preceding or follow-
ing events. Formally, let κ(e, w) be the concatenation of the five context elements
of event e, hyper-parametrized by w > 0. Then, similarly to the definition of Λe

in Eq. (9), we write,

Λκ(e,w)
e =

{
Λ

κ(e,w)
0 , for E(e) = 0, κ(e, w)

Λ
κ(e,w)
0 + Δ, for E(e) = 1.κ(e, w)

(9)

Let pκ(e) = P (E(e) = 1), κ(e, w)) be the probability of event e being a case
ending event. By similar assumptions as in LCPAP derive that for any pair of
events e, e′:

p̂κ(e)

p̂κ(e′)
=

λ̂κ(e,w) − λ0

λ̂κ(e′,w) − λ0

. (10)

In this case, λ̂κ(e,w) is the mean value of the random variable Λ
κ(e,w)
e . However,

since it comprises a complex context conditioned on the 5 elements mentioned
above, we do not simply estimate it using a simple mean over the different context
levels, but regress the inter-event time on the context elements (treating them
as features). Therefore, estimating λ̂κ(e,w) (and λ̂κ(e′,w)) turns into a regression
problem that we solve using deep-learning.
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Fig. 4. NN architecture for the GCPAP.

Concretely, we propose the Neural
Network (NN) architecture presented
in Fig. 4. It comprise LSTM, which
is a special type of Recurrent Neu-
ral Network (RNN) introduced in [17].
LSTM possesses an advanced mem-
ory cell that gives it powerful model-
ing capabilities for long-term dependen-
cies [27]. The advantage of LSTM is
that it can work with sequence tensor
possessing more than two dimensions,
which is unconventional for machine-
learning algorithms [29]. Ultimately, it
means that we can use the sequence of
activities “as-is” [29] without retreating
to simplifications such as the directly-follows relation. The five inputs visible in
Fig. 4 reflect the 5 aformentioned pieces of contextual data. The NN is com-
posed of two separate LSTM layers made, followed by a Dense layer. It is a
design choice since various alternative architectures are possible. The output is
the expected time gap before the next event that we will use to cut the traces.
Figure 3 provides an example of how this approach may outperform TAP and
LCPAP. In fact, the four largest predicted time gaps are: ∞ (#10, journey end-
ing events), 5.6 (#4), 5.5 (#2), and 5.2 (#6); respectively producing the cuts
GCPAP4, GCPAP2, GCPAP1, and GCPAP3 visible in Fig. 3. We conveniently
set the predicted values to time gaps that allow GCPAP to find the true par-
titions. It was done for demonstration purposes as more than 10 events are
typically needed to get predicted time gaps that allows to retrieve ground truth
cuts.

4 Evaluation

The goal of the experimental evaluation is to benchmark the three methods for
customer journey partitioning presented in Sect. 3. Our experiments show that:

1. The best performing CJP is GCPAP, followed by LCPAP for both synthetic
and real customer journey data, while TAP comes last.

2. The synthetic dataset highlights the value of LCPAP, especially when the
customer journey data is complex; i.e., when the time gaps are not very
informative.

3. We show in the real dataset the existence of outlier time gaps that TAP
cannot handle well.

The implementation of the three methods, as well as the results of the experi-
ments and the instructions to reconstruct the experiments are available online2.

2 https://github.com/gaelbernard/cjp.

https://github.com/gaelbernard/cjp
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For the GCPAP, we set w to 10, the number of unit to 64 (LSTM and dense
layers) and the number of epochs to 20.

In the remainder of the section, we first introduce the loss function, Π, used
for the evaluation. Then, we present the first set of experiments performed on
a synthetic customer journey dataset. We report a more extensive experiment
containing 10 customer journey logs, and a scalability analysis in a separate
technical report [7].

Lastly, we demonstrate the applicability of our approach by presenting a
second set of experiments performed on a real-world dataset, which contains
customer interactions with a service desk of a large municipality. Note that the
real-world data experiment does not aim at an exhaustive application of the
approach to numerous datasets, but rather exemplifies how one would use the
method in similar realistic settings.

4.1 The Loss Function

Customer journey partitioning can be viewed as a series of binary classification
problems: we either correctly identify the true case, or make an error identifying
that a sequence corresponds to a case. Our classification may hence fall into one
of the following categories: (1) True Positive (TP ): Partition correctly found, (2)
False Positive (FP ): Case wrongly cut, (3) True Negative (TN): Case correctly
not cut, and (4) False Negative (FN): Partition not found. The True Positive
Rate (TPR), calculated as TP

TP+FN , provides the fraction of partitions we are
able to retrieve. Conversely, the False Positive Rate (FPR), FP

FP+TN , measures
the fraction of cases that are wrongly cut. The number of cases, K, is not known
in advance and hence we can reach a perfect TPR by classifying all the events
as cuts (K = |LJ |). The other extreme would be to get a perfect FPR by not
partitioning the event logs (K = 0).

ROC curve analysis offers a suitable tool to evaluate the trade-off between
TPR and FPR for various values of K. The diagonal represents a random
guess (dashed lines in Fig. 7), while the coordinate (0,1) is a perfect classifier.
Moreover, we use the area under the curve (AUC) as a loss function, since it
allows summarizing the ROC curve using a single metric [10].

4.2 Evaluation Using Synthetic Customer Journey Data

Fig. 5. Process Model used for the
experiment.

The Dataset. We define a process model
depicted in Fig. 5. Then, we produce 1,000
traces from this process model using the plu-
gin “Simple simulation of a (stochastic) Petri
net” in ProM 6.7. Next, we randomly assign
each of the traces to 10 customers in order to
form 10 customer journeys. Eventually, this
means that these 10 customer journeys are
composed, on average, of 100 stacked traces
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that we wish to retrieve by leveraging one of the three partitioning techniques.
The inter-event time is a key parameter to control for the complexity of the
experiment. To simulate the time difference, we assume that the inter-event
time corresponds to an exponential distribution, which implies that events arrive
according to a Poisson process. Formally, we set

timeDiff(λ, r) =
−ln(r)
(1/λ)

{
+d, if new variant
+0 otherwise

where:

λ is the rate of the Poisson Process that we set to 1
r random value uniformly distributed between 0 and 1
d is a constant (delay) which is added if the next event belongs to a new journey

By adding a delay (d) when the next event belongs to a new case, we control
the difficulty to retrieve the optimal partitions. The larger the d is, the easier
it is to retrieve the optimal partitions. Note that the delay is constant, but the
inter-case time is not since we sum the delay with a random value.

Fig. 6. AUC for various delays.

Results. Figure 6 shows the AUC for
various delays. As can be seen, GCPAP
outperforms the two other approaches,
in particular, for low delays. Even
though LCPAP loses accuracy com-
pared to GCPAP, this approach con-
siders a limited context (i.e., pairs of
events) and is hence very efficient to
compute (see the technical report, [7])
and still largely outperforms TAP.

Figure 7 shows the ROC curve for
the delays: 0.05, 0.10, 0.30, and 0.50.
We observe that TAP curves have an
interesting shape: the TPR is saturat-
ing before the FPR. For instance, for a
delay of 0.5, we can see that the TPR
reaches 100% when the FPR is approximately 60%. We interpret the results
as follows: at TPR saturation point, we already retrieved all the partitions and
augmenting K is only making the FPR worse, i.e., we are trying to cut the trace
at values that are lower than the delay. The LCPAP curves also have an inter-
esting informal characteristic: they show a ‘stair-like’ shape. We believe that this
is due to the lower number of unique values at which we can apply a cut.

In [7], we extended the experiment with 10 new process models and conducted
a scalability analysis.
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Fig. 7. ROC curves for the experiment with the synthetic datasets for the delays 0.05,
0.10, 0.30 and 0.50.

4.3 Experiment with Real Customer Journey Data

Dataset. We used an event log that contains tickets handled by a service desk of
a municipality over a time span of one year. Since tickets have well defined start
and end timestamps, it does not meet our definition of long-running customer
journeys. However, we use this to our advantage by considering that ticket identi-
fiers are the true cuts that we wish to retrieve using our three techniques. Hence,
we keep the ticket identifier for the evaluation as our ground truth and consider
customer journeys to be interactions between a customer and the service desk.
We only keep the top 1% of customers that generated most of the tickets through-
out the year to focus the experiment on difficult cases where many tickets are
generated within a short period of time. From this procedure, we obtained a cus-
tomer journey event log with the following characteristics: 27 customer journeys,
7.9K tickets, and 100.9K ‘touchpoints’ of 290 types. The median time between
events belonging to the same case was 34 s, while the median time between events
belonging to distinct cases within a customer journey was 30 min. Despite this
massive mean time differences, retrieving the journeys is not straightforward due
to the existence of extreme values.
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Fig. 8. ROC curves for real customer
journey data

Results. Figure 8 shows the ROC curves
and the AUCs of the three CJP meth-
ods. Similar to the results for the syn-
thetic experiments, GCPAP outperforms
the two other approaches. It is interest-
ing to note that the TPR for the TAP
reaches a plateau around 90% and jump to
100% only when K = |LJ |. In fact, some-
times, two events from two distinct tick-
ets closely follow each other, causing the
TAP to wrongfully assign them to the same
case. It demonstrates that the extreme val-
ues mentioned in Sect. 3 do exist in real
customer journey data. We may further
observe that GCPAP and LCPAP solve this issue as they can exceed the value
of 90% TPR much sooner compared to TAP. Lastly, we note that the LCPAP
‘stair-like’ shape highlighted with the synthetic dataset is not as strong in Fig. 7
because of the large number of unique events of the real dataset (i.e. 290).

5 Discussion and Limitations

In this part, we discuss the limitations of our approach. Our solution for the CJP
problem can be easily extended and generalized; furthermore, it does not rely
on any knowledge of the underlying process models. However, we make several
assumptions about the data that may limit the applicability of our method.

First, we assume that traces within a journey cannot overlap. Specifically, our
technique cannot recompose correctly multiple journeys from a single customer
that runs simultaneously. Second, we assume that the touchpoints happening
along the journey on various channels are available on a uniform granularity
level and exhibit reasonable data quality. One may require some preprocessing
to level event abstractions, which could be performed using one of the event
abstraction techniques studied in [30]. Lastly, being able to extract events logs
from heterogeneous information systems is a well-recognized dilemma within the
process mining community [1]. We claim that the customer journey’s complex
nature even exacerbates this challenge. The fact that customer journeys are
complex is also what makes it appealing for process mining analysis in the first
place.

By offering a flexible framework for partitioning customer journeys into
traces, we hope to ease the analysis of customer journeys with process min-
ing. Having said that, we see this work as a stepping stone for improving the
proposed methods, which would relax some of the aforementioned assumptions.

6 Related Work

Clickstream analysis requires a preprocessing step similar to the partitioning
of customer journeys to extract website usage insights. This step consists of
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grouping web interactions into user sessions [24]. The predominant technique to
partition clickstream data is based on time and is equivalent to TAP, e.g., [2,
18,24]. Other approaches leverage clickstream-specific information not available
in a customer journey context, such as the ‘referer’ [3], or logging events in a
service-oriented architecture [14].

In the human-computer interaction community, Leno et al. propose a work-
ers’ routines partitioning algorithm of user interaction logs using a graph-based
approach [21]. The underlying assumption is that a worker will perform the same
task with some variance and noise, and the goal is to partition them. A limi-
tation of this approach is that multiple routines cannot share a single activity
label, limiting its applicability to the less-structured customer journey context.
Another approach in the same community is presented in [12]. It consists of a
custom-made frequent itemset mining that encompasses user behavior-specific
metrics. Interestingly, one assumption is that the order of the tasks within a
routine is not important. Both these works do not take into consideration the
time between events.

Event log abstraction is a recent area of studies within process mining that
aims to transform low-level events (e.g., a series of clicks on a website) into
meaningful activities to process stakeholders (e.g., canceling an order). One can
refer to [30] for an extensive literature review about abstraction techniques. Some
of these approaches require business knowledge inputs that can take the form
of ontologies [22], annotated event logs [25], interactions with business experts
[5], or composition rules [16]. In [23], Mannhardt and Tax propose to rely on
local process models (LPMs) introduced in [26] to by-pass the needs to input
business knowledge. What makes this approach appealing is that LPMs allows
dealing with long and chaotic traces and, hence, with customer journey logs.
Most of these abstraction approaches disregard the time and consider only the
activity context – the exact opposite of TAP. One interesting exception is the
work from [22] where a threshold is required to abstract the activities. Overall,
abstracting and partitioning traces fulfill a distinct goal but complement each
other to analyze overly complex event logs.

In the process mining community, LSTM based methods have been shown
to work well for predictive process monitoring tasks such as predicting the next
activity [15,27], timestamp prediction [27], or trace truncation [6]. However, to
the best of our knowledge, LSTMs have never been used as a preprocessing step
for event logs.

7 Conclusion

In this work, we defined and solved the problem of customer journey partition-
ing. Our approach generalizes and extends existing process mining methods for
finding cuts in traces. We found that the state-of-the-art method for cutting
traces, namely TAP, was overrun by our newly proposed process-aware parti-
tioning (PAP) methods that are able to take into account local (LCPAP) and
global (GCPAP) contextual information. Both LCPAP and GCPAP outper-
formed TAP on both synthetic and real customer journey data. Compared to
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TAP and using LCPAP and GCPAP, we improved the partitioning of the real
customer journey data by 4.0 and 6.3% points, respectively.

In future work, we would like to further employ the flexibility offered by
Neural Network architectures, to potentially improve the partitioning of long-
running by taking additional contextual information into consideration (e.g.,
resources, departments, day of the week). In addition, we aim at exploring inter-
case dependencies between journeys, since customer interactions are often per-
formed in groups (e.g., family members and co-workers often interact together).
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