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Abstract

The series of interactions between service providers and customers are called

customer journeys. These customer journeys, today, are highly personalized, due

to the new devices and technologies that are available. At the same time, new

methods are required to help businesses better understand customer behavior. In

this dissertation, we investigate the ways in which process mining and business

process management can help to increase businesses’ comprehension of customer

journeys. One of the key findings is that both the process mining framework and

the XES standard for storing event logs in process mining settings are relevant

for customer journeys. We show that some process mining activities can be

applied as-is while other techniques need to take into account the specifics of

customer journeys. In particular, we contribute by proposing new algorithms

for discovering, enhancing, and exploring customer journeys. We also propose

new techniques for predicting next customer interactions. Overall, we contribute

by leveraging process mining know-how to improve customer journey analytics;

two disciplines that were, to the best of our knowledge, never before considered

together.
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Chapter 1

Introduction

T
ODAY, companies often provide highly personalized services to their cus-

tomers. For instance, when a customer books a flight, airlines companies

often propose additional services like priority check-in, private lounges,

extra luggage, insurance, special meals, extra legroom, and assistance, to name a

few. These extra services might be ordered with the plane tickets. However, they

can usually be added at a later stage through various channels, e.g., at the airport,

by phone, by email, or through use of a web interface. These new highly person-

alized services are also increasingly made available to citizens by government

services or to patients by healthcare services. Hence, ‘customers’ should be taken

in the broad sense of the term.

The various combinations of services and channels provide customers options

and freedom. To support such flexible business environments, complex processes

need to be carefully orchestrated to craft a seamless customer journey. Making

sure this journey results in a positive customer experience is crucial for customer

retention and positive word-of-mouth. As highlighted by Edelman and Singer,

“Journeys are [...] becoming central to the customer’s experience of a brand–and as

important as the products themselves in providing competitive advantage” [38].

New methods and approaches are needed to support companies in their quest

for the “perfect” customer journey. Among other insights, companies need to

know if the order in which the customer interacts with the service has an impact on

customer satisfaction, if some channels are more suited than others to a specific

customer segment, or if the next predicted interaction with the customer is likely

to be a complaint. Insights collected through data analysis can help companies

take proactive measures or provide input when they are redesigning the service.

The fact that services can be consumed in various channels at any time is

made possible by the recent development of Information and Communication
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Technologies (ICTs), especially new mobile technologies and modern cloud in-

frastructures. Interestingly, the use of ICTs goes hand in hand with the ubiquitous

availability of individual-level customer data [63]. That is, evidence of what the

customers have experienced during their journey is available in information sys-

tems. However, these details need to be transformed into usable knowledge for

value to be extracted from them. We argue that process mining, an emerging

discipline that enables process models and event logs to be analyzed in various

ways to deliver “fact-based insights” [94], is an ideal technology for extracting

knowledge from customer journey data.

The aim of this thesis is to investigate the intersection between customer

journeys, process mining, and business process management and propose novel

ways to perform data-driven customer journey analytics. In the next section, we

introduce the theoretical foundations of these disciplines. We then detail the

objective of this thesis before describing the six component publications that

constitute its main body.

1.1 Background

We introduce the main concepts of this topic. Specifically, we discuss customer

journeys, customer journey maps, business process management, and process

mining. We then explore the link between these concepts.

1.1.1 Customer Journey

At its most basic, a service is the application of specialized competencies for

the benefit of another entity or the entity itself [99]. When consuming a service,

a customer will interact with a service provider. The interactions between the

customer and the service provider are called touchpoints. The whole sequence

of touchpoints is called a journey. Although the term “customer journey” has

gained momentum in recent years [31], the fact that customers interact with

service providers is not new. So why has the customer journey concept become so

popular lately? We first provide some context and then provide a potential answer

to this question.

Approximately two decades ago, the goods-centered model of economic ex-

change shifted toward a service-centered paradigm. From a goods-centered

perspective, economic activity is the process of making goods and selling them

[99]. In contrast, a service-centered dominant logic entails “collaborating with

and learning from customers and being adaptive to their individual and dynamic
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needs” [99]. ICTs have been an enabler for this shift to take place [27]. In this new

paradigm, the customer experience is of utmost importance. This implies that

the customer journey does not stop when the service has been delivered, because

the customer must learn to use the service, adapting it to their unique context

[99]. As a consequence, several internal company functions are involved in every

customer journey, making the alignment of previously unconnected corporate

silos difficult [31].

New forms of ICTs, such as mobile phones, intelligent virtual assistants, or

cloud services, have also allowed companies to develop new types of services

or complement existing ones. As an example, traditional taxi services are now

challenged by companies like Uber, which enables the customer to order and pay

for a taxi from a mobile application. As another example, bricks-and-mortar retail

businesses such as Ikea often have an online version of their physical stores where

customers can order goods. Offering several integrated channels to customers is

referred to as an omnichannel strategy. This strategy “expose[s] customers to a

rich blend of offline sensory information and online content” [21] and has become

the new norm [63]. Accordingly, there is an increasing trend of customers ordering

online. For instance, the Swiss e-commerce market volume grew by 10% in 2018,

reaching CHF 9.5 billion and is estimated to continue to grow by 10% annually for

the next three years [54].

We are now coming back to the question posed at the beginning of this section:

why the customer journey concept has gained so much attention recently. The

service-centered context, the proliferation of ICTs, and the omnichannel strategy

have collectively made customer journeys more complex and also more important

for service providers to understand. It is then unsurprising that “customer journey

analytics solutions continue to garner significant interest from organizations

seeking to improve customer experience” [31].

In the next section, we introduce the Customer Journey Map (CJM), a visual-

ization tool tailored to discuss and improve customer journeys.

1.1.2 Customer Journey Map

A CJM is a visual tool that supports discussions about improving the various types

of journeys customers will experience. The idea of a CJM is to have simple visu-

alization that can be interpreted by a broad audience. In opposition to business

process models, it does not include advanced gateways such as choices, parallels

or loops. Fig. 1.1 shows an example of a CJM. The x-axis represents the time, while
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Renting a car after booking ticket 

time

touchpointsBooking an insurance online 

Booking an insurance at the service desk 

Upgrading to VIP offer

Announcing an accident with the car

Renting a car at the service desk

Picking up the car

Fig. 1.1 Customer Journey Map that displays three variants for renting a car until a
car accident happens.

the y-axis lists the touchpoints. In [6], we conducted a literature review to list the

main components of a CJM. The main components are as follows.

Customer. A customer is the stakeholder experiencing a service [104]. A

loose definition should be employed here as it includes people such as patients

[104], students [1, 68], or software users [36, 58]. In [83], the authors highlight the

importance of collecting sociodemographic information to ease CJMs users to

put themselves in customers’ shoes. When a customer is mentioned as a fictional

character, the term “persona” is sometimes used [48, 71, 83, 88].

Journey. A CJM contains at least one journey, which is a typical sequence of

touchpoints followed by a customer. Two types of CJMs exist. One is designed by

internal stakeholders to describe what an ideal journey would look like [1], which

identifies opportunities for novel services [71] or is employed as a diagnostic

tool [83]. We refer to the latter as an expected journey. In contrast, an actual

journey showcases how a journey is experienced by the customer, finds existing

customers’ problems or needs [1, 36, 71, 73], or pictures the consumption of

services by customers [13].

Mapping. Mapping is a process consisting of tracking and describing cus-

tomers’ responses and experiences when using a service [1, 30, 48, 68]. Ultimately,

these elements are reported on a map.

Goal. A customer journey should be mapped with a goal in mind [71, 88],

which is also referred to as scenario [1], prompts [68], story [73], or main intention

[71]. It triggers interactions with users [1], and streamlines the thought process

for users [68]. The goal “connect a low-cost hardware device, such as an Arduino

board, to a desktop computer” is a typical example from the literature [36].

Touchpoint. A touchpoint is an interaction between customers and compa-

nies’ products or services [1, 56, 71, 104] such as “searching for a product” [36], or

“finding seats” [56]. The arrangement of touchpoints can be cyclic: a customer can
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iterate a few times over the same touchpoints [80]. Moreover, the arrangement is

non-linear: (1) most of the time, the customer will not go through all the existing

touchpoints [68, 80]; (2) the customer might miss a planned touchpoint; and (3)

the customer can unexpectedly quit the journey.

Timeline. The timeline describes the duration of the journey from the first

until the last touchpoint [58]. Due to the forecast nature of expected journeys,

they typically do not have a timestamp. Yet, a number attached to an event (i.e.,

touchpoint) can depict the sequence within the timeline [68].

Channel. The channel is the method chosen by the customer to interact with

the touchpoint [68, 77] such as a “reference desk” [68] or “social media” [83].

Stage. A stage, encompasses several touchpoints. Some authors used the

splits: before, during, and after the experience, but employing domain-related

steps is also possible. For instance, in [58], the stage refers to the waterfall model

(i.e., software development). Some CJMs do not use stages at all [1, 36, 56, 73].

Experience. The experience encompasses customers’ feedback and emotions.

We identified three elements to express the experience. The first one is the emotion.

Using only one continuum of emotions–such as unhappy to happy–may fail to

depict a customer’s experience [36]. Thus, describing the emotion requires some

flexibility. Second, the scale measures how positive or negative the experience

was for the customer [56]. Third, many studies use customers’ quotes to represent

what customers have been through [30, 36, 73, 104].

Lens. Some components of CJMs are domain-specific. For instance, in [73],

the authors appended a layer below the CJM to indicate the weather because it

impacts customer satisfaction when using the service. We refer to a layer with the

term lens to reflect that multiple views are possible on the same map [58]. Sug-

gestions and opportunities [1, 68] are some other examples of lenses superposed

on top of touchpoints. They are important because they promotes reflection and

analysis of what happened during the journey [58].

Multimedia. The usage of multimedia makes a CJM engaging and simple to

understand [68, 80, 83]. For instance, recording customers while they are filling

out the CJM allows to better understand them [30, 36, 56]. Multiple types of

multimedia are reported: audio [30], video [36, 56], photos [56], and sketches [80].

In the literature, we found that CJMs are used for different purposes, including

to increase understanding [68, 104], to involve [36, 56], and to communicate [30].

In Fig. 1.2, we propose a model that shows the hierarchy between the components

of a CJM [6].

Følstad et al. distinguish two uses of CJMs: one aiming to represent anticipated

journeys, called the expected journey; and the second, the actual journey, aiming
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cjm ▸
{goal}

journey ▸

touchpoint  ▸customer ▸
{name, gender, country, …}

experience
{emotion, scale(int), quote}

channel
{name}

stage
{name}

lens ▸
{name, content}

*

*

*

{type}

{timestamp(date), name, content}

XML element
Value of XML attribute ‘key’
May contain multiples…
Can contain XML element:

LEGEND

*▸

{type, source, description}
multimedia

*

Fig. 1.2 Proposed hierarchical presentation of CJMs’ components [6].

to describe how the journey was “really” experienced by customers [41]. For

instance, the CJM displayed in Fig. 1.1 could be used by internal stakeholders

to discuss various available insurance packages and their relevance to service

delivery when a rental car customer has a car accident. Typically, stakeholders

can anticipate that a certain type of journey might not please a customer segment.

The service could then be redesigned to improve the likelihood of that segment’s

satisfaction. In this context, we call these CJMs “expected” because they are

designed by internal stakeholders. In contrast, “actual” CJMs reflect what the

customers have experienced. Because they show the customers’ point of view,

actual CJMs provide company stakeholders a fresh perspective of the journey

[1, 56]. For instance, traces of customer journeys available in information systems

(e.g., logs from a customer navigating through a sales website) could be used

to build a CJM from facts. This CJM can then be compared with an expected

CJM—typically drawn on paper for strategic or ideation purposes—to highlight

differences. As noted in [80], “People don’t behave like robots, and no matter how

well we craft an experience, they will not perceive exactly as we anticipate or hope”.

Hence, a discrepancy might exist between expected and actual CJMs.

1.1.3 Business Process Management

To support customer journeys, companies need to define their business processes

(BPs). Simply put, BPs are what companies do whenever they deliver a service to

customers [37]. BPs comprise the activities and decision points that will impact

the execution of service-related activities [37]. A BP is considered to be good if it

contributes to meeting the strategic objectives of an organization [97]. Business

Process Management (BPM) is the art and science of overseeing work performed

in an organization to ensure consistent outcomes and to take advantage of im-

provement opportunities [37]. BPM is a broad discipline that combines knowledge

from information technology, management, and industrial engineering [94, 97].

Managing business processes takes continuous effort; companies often evolve
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1.4 The BPM Lifecycle 21

Fig. 1.7 BPM lifecycle

of the tasks of the process. This may include assigning tasks to process participants,
helping process participants to prioritize their work, providing process participants
with the information they need to perform a task, and performing automated cross-
checks and other automated tasks where possible. There are several ways to im-
plement such an IT system. This book focuses on one particular approach, which
consists of extending the to-be process model obtained from the process redesign
phase in order to make it executable by a BPMS (cf. Sect. 1.3.3).

Over time, some adjustments might be required because the implemented busi-
ness process does not meet expectations. To this end, the process needs to be moni-
tored and analysts ought to scrutinize the data collected by monitoring the process in
order to identify needed adjustments to better control the execution of the process.
These activities are encompassed by the process monitoring and controlling phase.
This phase is important because addressing one or a handful of issues in a process
is not the end of the story. Instead, managing a process requires a continuous effort.
Lack of continuous monitoring and improvement of a process leads to degradation.
As Michael Hammer once put it: “every good process eventually becomes a bad pro-
cess”, unless continuously adapted and improved to keep up with the ever-changing
landscape of customer needs, technology and competition. This is why the phases
in the BPM lifecycle should be seen as being circular: the output of monitoring and
controlling feeds back into the discovery, analysis and redesign phases.

To sum up, we can view BPM as continuous cycle comprising the following
phases (see Fig. 1.7):

• Process identification. In this phase, a business problem is posed, processes rele-
vant to the problem being addressed are identified, delimited and related to each
other. The outcome of process identification is a new or updated process archi-
tecture that provides an overall view of the processes in an organization and their
relationships. In some cases, process identification is done in parallel with per-

Fig. 1.3 The Business Process Management Lifecycle [37].

so quickly that a process that was considered good several months ago might no

longer be optimal today. The BPM lifecycle, shown in Fig. 1.3, is a particularly

useful tool for assisting with this. The idea is that once a business process has

been implemented, it should be monitored and analyzed regularly so that it can

be redesigned, if needed, to meet the strategic objectives of the organization.

In a customer journey analytics context, mastering the whole BPM lifecycle is

crucial for companies; ill-defined processes will impact customers, for instance,

because they are sources of delay, error, and miscommunication. As noted by

Tseng: “Organizations setting out to win customers, deliver good service, and

survive vigorous competition have to engage in continuous improvement” [89].

Fundamentally, the goal of BPM is to find models that best describe how to handle

processes, helping analysts and managers to attain high quality and efficiency [67].

It is, therefore, internally oriented. In contrast, customer journey management

(CJM) is about helping internal stakeholders to put themselves in their customers’

shoes. Fig. 1.4 shows how these models convey different information.

CJM depicts journeys as experienced by customers while BPM shows the

available combination of activities using advanced constructs such as XOR or

parallel gateways. Different information is leveraged for CJM than is used for BPM.

For instance, customers’ characteristics, levels of satisfaction, and emotions are

all central pieces of information for CJM. Such information might sporadically
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Fig. 1.4 Illustration of a process model (left) and a CJM (right) discovered from the
same event logs.

be used to enhance BPM, but usually only once an optimal model has been

discovered. Overall, CJM is used to supplement but not replace BPM [76].

In the next section, we introduce process mining, which is the bridge between

data science and business process management.

1.1.4 Process Mining

Process mining provides a set of tools to discover, monitor, and improve processes

based on event logs [94]. In doing so, it enables a link to be established between

process models and “reality” [94].

The first step before performing process mining activities is to transform the

data captured in information systems into event logs. Event logs have a special

data structure with three minimum requirements. First, activity names are used

to identify events [94]. An event is the execution of an activity defined in a BP. It is

equivalent to a touchpoint. Second, a case identifier should exist to link an event

to a trace. A trace is a set of ordered events. It is equivalent to a journey. Third,

the events must be available in an ordered manner–ideally with timestamps for

the beginning and the end of the activity. The process mining analysis can be

further extended by enriching the events with additional information, such as

an indication of the resource performing the activity or any other relevant data

related to the case.
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Fig. 1.5 Process Mining framework [94].

The literature distinguishes two event data types: historic data refers to com-

plete event logs from the past, while current data represents ongoing processes

typically used to perform operational support. It is also worth mentioning that

one can distinguish a “de jure” from a “de facto” model. The former is normative,

since it intends to steer or control the “reality”, while the latter derives from event

logs, which means that the model seeks to describe reality.

Process mining is employed for different purposes and is used with or without

a priori process models. Altogether, the process mining framework, [94], includes

the following activities (see Fig. 1.5):

1. Check ensuring that a trace fits a process model.

2. Compare finding discrepancies and commonalities between two pro-

cess models.

3. Detect detecting deviation of a trace on a process model at runtime.

4. Diagnose analyzing the process models (without event logs), e.g., struc-

tural analysis of the petri net.

5. Discover mining a process model from an event log.

6. Enhance augmenting a process model with external information, e.g.,

adding timing information to highlight bottlenecks.

7. Explore exploring process models using a combination of event data

and models.
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8. Predict predicting how a running case will unfold (e.g., remaining

time).

9. Promote finding patterns that work well and updating the “de jure”

model accordingly.

10. Recommend recommending the best set of actions to fulfil a requirement

(e.g., minimizing cost).

These ten activities, applied on a combination of current data, historic data,

“de jure” models, and “de facto” models, can inform and motivate a wide spectrum

of actions made possible via process mining. For instance, one can use the activity

‘check’ to realize that the execution of the process often deviates from how it is

defined in the business process model. After further investigation, one could real-

ize that the deviation is beneficial for the company and use the activity ‘promote’

to update the process model and push more employees to execute the process in

such a way. In the next section, we show how to link CJMs to process mining.

1.1.5 Process Mining Framework for CJM

We envision an opportunity to integrate customer journey analytics with the pro-

cess mining framework introduced in the previous section. Indeed, we expect the

knowledge acquired to combine data on top of models in the process mining and

BPM disciplines to provide an ideal basis to discover, analyze, or replay customer

journeys using a rigorous approach. Respectively, the expected and actual CJMs

correspond to the “de jure” and “de facto” process models. The alignment between

a CJM and the process mining framework can be reflected by updating the original

process mining framework (Fig. 1.6).

In order to perform process mining analysis on customer journey data, one

need to map the components of a CJM to the IEEE XES standard [47], which is

the prominent format to import logs in process mining software. Throughout

the thesis, we use the mapping visible in Table 1.1, which we propose in [6]. The

updated process mining framework (see Fig. 1.6) and the mapping (see Table 1.1)

are the cornerstones of this thesis because our contributions are built around

them.
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Table 1.1 Mapping between XES and the CJM model

Level XES standard CJM model

log log → cjm
log concept:name → cjm:goal
trace trace → journey
trace concept:name → customer:name
event event → touchpoint
event concept:name → touchpoint:name
event timestamp:date → touchpoint:timestamp

Process Mining Framework
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Fig. 1.6 Process mining framework from [94] with the proposed extension for CJM.
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1.2 Problem Statement

The core idea of this thesis is to leverage the concept and activities of the process

mining framework to analyze customer journeys. To do so, we pursue two research

questions.

RQ1 How can customer journey maps be discovered, explored, and enhanced from

event logs?

The aim of this question is to propose a novel technique to build a CJM from

event logs, similar to the process mining discovery technique that discovers

a process model from event logs. In the same vein, we also seek to investigate

how a CJM can be enhanced and explored using process mining techniques.

RQ2 How can the touchpoints of a customer journey be predicted?

Customer journeys are increasingly complex. As a consequence, it is difficult

to anticipate how a running customer journey will unfold. However, knowing

the next steps of the journey might be valuable to please the customer. For

instance, if a customer success manager evaluates that the next predicted

steps are not optimal for the customer, she or he could take proactive mea-

sures and propose personalized offers in an effort to positively influence the

next steps.

1.3 Thesis Structure

This thesis is composed of five distinct publications. These publications are

included as they appear in conference proceedings and hence each can be read

independently. For this reason, there is some redundancy between chapters. Note

that page numbers in the reference are given whenever available.

The papers are organized in two main streams that each corresponds to a

research question. The first stream, RQ1, is addressed in Chapters 2 to 4, as these

contributions focus on the discovery, enhancement, and exploration of CJMs

from event logs. The second stream, RQ2, focuses on prediction techniques. The

publications related to RQ2 appear in Chapters 5 and 6.
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Chapter 2 Bernard, G. and Andritsos, P. (2019b). Contextual and behavioral

customer journey discovery using a genetic approach. In 23rd Eu-

ropean Conference on Advances in Databases and Information Systems

(ADBIS), pages 251–266, Cham. Springer. https://doi.org/10.1007/

978-3-030-28730-6_16

In Chapter 2, we mimic the genetic process to discover process models from

event logs described in [22, 96, 103]. However, we discover CJMs instead of process

models. This paper contributes by defining the customer journey discovery task

and by proposing a genetic implementation that considers both the ordering of

touchpoints and the potential contextual data attached to the touchpoints.

Chapter 3 Bernard, G. and Andritsos, P. (2017a). Cjm-ex: Goal-oriented explo-

ration of customer journey maps using event logs and data analytics. In

BPM Demo Track and BPM Dissertation Award co-located with 15th In-

ternational Conference on Business Process Management (BPM Demo).

http://ceur-ws.org/Vol-1920/

In Chapter 3, we propose a technique to organize CJMs hierarchically so that

we can offer a web interface to drill down into the CJMs. The exploration can

optionally be done with an a priori goal. For instance, one can highlight journeys

that concern a specific customer segment or journeys that contain a specific

touchpoint. When a goal is set, areas of the hierarchical tree that fulfil the goal are

highlighted. This contribution takes the form of a demonstration which is publicly

available.1

Chapter 4 Bernard, G. and Andritsos, P. (2018). Cjm-ab: Abstracting customer jour-

ney maps using process mining. In Forum and Doctoral Consortium

Papers Presented at the 30th International Conference on Advanced

Information Systems Engineering (CAiSE Forum), pages 49–56, Cham.

Springer. https://doi.org/10.1007/978-3-319-92901-9_5

In Chapter 4, we reduce the complexity of very large CJMs by semi-automatically

abstracting similar activities together. For instance, the two activities “paying by

card” and “paying by cash” could be summarized using the activity “paying”. To

measure the proximity between activities, we leverage process discovery tech-

niques. By doing this, we contribute by showing how a process mining algorithm

is used as a proxy to enhance an existing CJM.

1Available at: http://customer-journey.unil.ch/cjm-ex/

https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.1007/978-3-030-28730-6_16
http://ceur-ws.org/Vol-1920/
https://doi.org/10.1007/978-3-319-92901-9_5
http://customer-journey.unil.ch/cjm-ex/
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Chapter 5 Bernard, G. and Andritsos, P. (2020). Truncated trace classifier. removal

of incomplete traces from event logs. In 21st International Working

Conference on Business Process Modeling, Development, and Support

(BPMDS), pages 150–165, Cham. Springer.

In Chapter 5, we tackle the task of predicting whether a journey has ended.

Consider a case where a customer visits ten different products on a website within

a one-hour time interval. No new activity from the customer is then observed for

the next three hours following the last touchpoint. We contribute by proposing an

algorithm that gives the likelihood of observing new touchpoints for this journey.

This contribution is especially relevant in a customer journey context, as we do

not have control or even influence over such customers’ decisions. Hence, we

argue that it is harder to predict the end of the CJM trace than to predict the end

of a process model under the control of a company. We contribute by showing

that this type of classifier can help increase the accuracy of predicting next events

and can also improve the quality of the discovered process models.

Chapter 6 Bernard, G. and Andritsos, P. (2019a). Accurate and transparent path

prediction using process mining. In 23rd European Conference on

Advances in Databases and Information Systems (ADBIS), pages 235–

250, Cham. Springer. https://doi.org/10.1007/978-3-030-28730-6_15

In Chapter 6, we do not predict whether a journey has ended, but rather how

it will end. In other words, we predict the activities that will happen until the

completion of the journey. Not only we can predict which activities will happen,

but we can explain our prediction using a process model. Hence, we contribute by

proposing an algorithm that outperforms neural network approaches like LSTM

in terms of both accuracy and transparency. We received the best paper award for

this contribution.

Table. 1.2 provides a complete picture of the nine papers that have been

published as part of this work. Four papers were not included in the thesis for

the following reasons. The paper “A Process Mining Based Model for Customer

Journey Mapping”, [6] was partly integrated in the introduction of this thesis. We

did not add it as an independent chapter to avoid heavy redundancies. The paper

“When Sales Meet Process Mining: A Scientific Approach to Sales Process and

Performance Management”, [12], emphasizes the relevance of process mining

for sales rather than the customer experience. Although both topics are related,

this contribution takes the perspective of the company rather than the customer.

https://doi.org/10.1007/978-3-030-28730-6_15
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The paper “Discovering Customer Journeys from Evidence”, [9], is a research-in-

progress that was completed in the paper [9] visible in Chapter 2. The paper

“Discovering Customer Journey Maps using a Mixture of Markov Models”, [49], is

an alternative CJM discovery approach to [9] that would fit the thesis topic well.

However, this research was mainly conducted by its first author, Matthieu Harbich,

and thus is not included.
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Table 1.2 Complete list of papers published during the thesis in chronological
order.
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Chapter 2

Contextual and Behavioral Customer

Journey Discovery Using a Genetic

Approach

Abstract. With the advent of new technologies such as smartphones or

virtual assistants and the increase in customers’ expectations, services

are becoming more complex. This complexity calls for new methods to

understand, analyze, and improve service delivery. Summarizing cus-

tomers’ experience using representative journeys that are displayed on

a Customer Journey Map (CJM) is one of these techniques. We propose

a genetic algorithm that automatically builds a CJM from raw customer

experience recorded in a database. Mining representative journeys can

be seen a clustering task where both the sequence of activities and some

contextual data (e.g., demographics) are considered when measuring

the similarity between journeys. We show that our genetic approach

outperforms traditional ways of handling this clustering task. Moreover,

we apply our algorithm on a real dataset to highlight the benefit of using

a genetic approach.

2.1 Introduction

A customer experience can be defined as a customer’s journey with an organiza-

tion. This journey spans over time and comprises multiple interactions called

touchpoints [63]. Recent studies show that customer interactions are increas-

ing [48], services are becoming more complex, and customers are often unpre-

dictable [77]. In this context, understanding the main journeys that were followed

by customers to consume a service is a complex task. According to Verhoef et
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Sequence of activities

touchpoints

All other home activities
Attending class
Civic/Religious Activities
Eat meal outside of home
Health Care
Household errands
Personal Business
Picked up passenger
Recreation/Entertainment
Routine Shopping
Service Private Vehicle
Shopping 
Visit Friends/Relatives
Work/Job
Working at home (for pay)

1

All other home activities

Shopping

Work/Job
Sequence of activities

touchpoints

2

Fig. 2.1 Two CJMs: ➊ uses actual journeys, and ➋ uses representative journeys.

al., a strategy based on customer experience may provide a superior competitive

advantage [63]. It is, therefore, not surprising that “Characterizing the Customer

Journey [...] and Strategies to Influence the Journey” has been ranked as one of the

most important research priorities for the coming years by the Marketing Science

Institute [70]. A challenge faced by many practitioners is that of understanding

the large number of combinations of activities that may exist when consuming a

service. As a result, new methods employed to design, analyze, and understand

customer journeys are emerging from the industry and are becoming popular

among researchers. One of these conceptual methods that will be the focus of

this work, is called the Customer Journey Map (CJM). By showing typical jour-

neys experienced by customers across several touchpoints, a CJM helps to better

understand customers’ journeys [6].

Fig. 2.1 shows CJMs derived from a real dataset.2 In this dataset, a journey is

all the activities that are performed by a citizen throughout the day. For instance

being at home, attending class and going back home is one of the potential jour-

neys. As can be seen in ➊ of Fig. 2.1, displaying such actual journeys on the CJM

without preprocessing the data results in an overwhelming chart. It becomes

clear that when a company deals with very large numbers of actual journeys, it

is necessary to reduce the complexity and to look at these journeys at a higher

2www.cmap.illinois.gov/data/transportation/travel-survey. Last visited: 11th of March 2020.

www.cmap.illinois.gov/data/transportation/travel-survey
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Fig. 2.2 Measuring the distance among three journeys with and without the con-
text.

level of abstraction. Specifically, representative journeys address this issue by

summarizing the dataset (using three journeys visible in ➋ of Fig. 2.1) [10].

The existing solutions to summarize collections of journeys [10, 43, 49] con-

sider only the sequence of touchpoints when measuring the distance between

journeys. Fig. 2.2 illustrates the process with 3 short journeys. Using a basic

distance measure between sequences (e.g., edit-distance), we cannot say which

one of ‘Journey 1’ or ‘Journey 3’ is closer to ‘Journey 2’ (top part of Fig. 2.2). We

suggest that demographics and other contextual information might be equally

important to measure the distance between journeys. Hence, in this paper, we

propose to integrate such information when mining journeys. The bottom part of

Fig. 2.2 shows that when we also consider the age group, it becomes clearer that

the closest journey to ‘Journey 2’ is ‘Journey 1’.

We propose an algorithm that summarizes a customer journey using both the

sequence of activities as well as the contextual information. We use a genetic ap-

proach which is an optimization procedure involving iterative search that mimics

natural selection. Our genetic approach uses only three intuitive parameters: (1)

the approximate number of representative journeys to use, (2) the weight of the

sequence of activities, and (3) the weight of the contextual data. In the evaluation

section, we demonstrate that we outperform existing techniques. Finally, we

highlight the impact of the three parameters using a real dataset and illustrate the

results with CJMs.

The chapter is organized as follows. Chapter 2.2 discusses the discovery of

customer journeys. In Chapter 2.3, we outline the existing techniques. Chapter 2.4
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depicts our genetic algorithm. In Chapter 2.5, we evaluate our approach using

internal and external evaluation metrics. Chapter 2.6 illustrates CJMs produced

by our algorithm. Finally, we conclude in Chapter 2.7.

2.2 Customer Journey Discovery

The goal of a customer journey discovery algorithm is to find a reasonable amount

of representative journeys that summarize well the observed journeys.

Definition 1 (Touchpoint): We define a touchpoint as the interaction between

a company’s products or services and a customer (see Chapter 1.1.2). ‘Buying a

product’ or ‘complaining about a product’ are two examples of touchpoints in an

online retail context. We define t as the touchpoint while T is the collection of all

touchpoints. The touchpoints are visible in the y-axis of the CJMs (Fig. 2.1).

Definition 2 (Actual Journey): An actual journey Ja is a sequence of touch-

points, S, and a set of contextual data C observed from customers. The contextual

data, C is a set of key-value pairs, e.g., (salary:low, city:Toronto). The order of S is

represented by the x-axis of the CJMs visible in Fig. 2.1. Note that only the ordering

of the touchpoints matters and not the exact their exact timestamps.

Definition 3 (Representative Journey): A representative journey, Jr , is a jour-

ney that summarizes a subset of actual journeys. In Fig. 2.1, ➊, shows how a CJM

would look like when we display actual journeys, while the bottom part, ➋, uses

representative journeys. Clearly, as can be seen in Fig. 2.1, the use of representative

journeys increases the readability of the CJM.

Definition 4 (Event Logs): An event log is denoted by JA , which is the list of

all journeys observed by customers.

Definition 5 (Customer Journey Map): By using representative journeys, a CJM

summarizes customer journeys. Let a customer journey map JR be the set of all

the Jr summarizing JA . kR denotes the total number of journeys. Typically, Part

➋ of Fig. 2.1 is a CJM, JR , containing three representative journeys summarizing

an event log.

We define the discovery of customer journeys as a function that maps all mem-

bers of JA to a member of JR ; i.e., that maps all the actual journeys to represen-

tative journeys ultimately displayed on a CJM. Discovering customer journeys

from event logs can be seen as an unsupervised clustering task. This task has

interesting challenges. First, choosing the number of representatives is difficult.

When the goal is to have a general overview about a particular dataset, it seems

reasonable to display only few journeys so the CJM is readable. However, discov-

ering a few dozens of representative journeys might also be a relevant choice if
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the goal is to catch complex and less generic patterns. Finally, the sequence that

best summarizes its assigned actual journeys needs to be found. It might be the

case that an ideal representative journey was never observed but still summarizes

the actual journeys well. These phenomena were observed by Gabadinho et al.,

and illustrated as follows: “We could imagine synthetic – not observed – typical

sequences, in the same way as the mean of a series of numbers that is generally

not an observable individual value” [44].

2.3 Related Work

There is a body of work in social sciences that is relevant to the summarization

of customer journeys. Typically, in [43, 44], Gabadinho et al. are summarizing

observed sequences with representatives. They define a representative as “a set of

non-redundant ‘typical’ sequences that largely, though not necessarily exhaustively,

cover the spectrum of observed sequences” [43]. The authors propose four ways to

choose a representative. ‘Frequency’, (1), considers the most frequent sequence

as the representative. ‘Neighborhood density’, (2), selects the sequence that has

the most neighbors in a defined diameter. ‘Centrality’, (3), picks the most central

object, i.e., the one having the minimal sum of distances from all other objects.

Finally, ‘sequence likelihood’ takes the most likely sequence according to a first-

order Markov model.

Since Process Mining operates in a bottom-up fashion, from data all the way

to the discovery of conceptual patterns, it is another discipline closely related

to the topic of customer journey discovery. The link between customer journey

maps and process mining was highlighted in the introduction of this thesis (Chap-

ter 1.1.5). However, business process models and CJMs are not built for the same

purpose. While a business process model captures how a process was or should

be orchestrated, a CJM is built for the purpose of better understanding what

customers have experienced.

In [5] (Chapter 3 in this thesis), we propose CJM-ex, an online tool to explore

CJMs.3 Because it uses a hierarchical structure, it allows to efficiently navigate the

space of journeys in CJMs. In [49], it was shown that customer journey maps can

be discovered using Markov models. In [10], we suggested a genetic approach to

discover representative journeys that uses only the sequence of touchpoints to

measure the distance between journeys. Hence, this current work can be seen

3Available at: http://customer-journey.unil.ch/cjm-ex/

http://customer-journey.unil.ch/cjm-ex/
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Fig. 2.3 Proposed genetic steps to generate a CJM.

as an extension of [10] to allow taking both the sequence of touchpoints and the

contextual information into account when building CJMs.

2.4 Genetic Customer Journey Discovery

Our work is inspired by existing genetic approaches to discover business process

models from event logs [22, 96, 103]. These approaches produce random process

models that are then evaluated by replaying event logs on them. Then, genetic

operations such as crossover or mutation are applied on the best process models

to create alternative process models that are, in turn, evaluated. The process

continues until the process reaches a quality threshold or after a fixed number

of generations. The advantage of such approach is the flexibility offered when

measuring the quality of a process model. For instance, we can favor simple

process models (i.e., composed of few elements) or we can favor process models

with higher fitness (i.e., more traces can be replayed on the process models).

Our approach is similar but we tailored it towards CJMs by introducing specific

evaluation metrics suited for them. Fig. 2.3 depicts the main phases of genetic

algorithms: (1) a preprocessing phase, (2) a phase for the generation of the initial

population, (3) the assignment of each actual journey to its closest representative,

(4) the evaluation of the quality of the CJMs, (5) the stopping criterion evalua-

tion, and (6) the creation of new CJMs by applying some genetic operations. We

introduce these phases in details while the Fig. 2.4 illustrates how it works.

2.4.1 Preprocessing

We assume that the representative journeys will be similar to the journeys with

the most frequent patterns of activities. Hence, to reduce computation time, we

extract the most frequent patterns that we use to create new journeys and generate

the initial population. Let Topℓn be the n most occurring patterns of activities

of length ℓ and Topn be the list of all the most occurring patterns of lengths 2 to

m. By using Topn , we reduce the execution time by two without impairing the

quality of the final output.
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Fig. 2.4 Illustration of the genetic process for the discovery of the best CJMs.

2.4.2 Initial Population

We start by generating a set of random CJMs. They are created by picking journeys

from Topn . In our running example, depicted in Fig. 2.4, the initial population

is visible in column ‘Generation 1’. In Fig. 2.4, the population size is 3. In our

experiments, we set the population size to 100.

2.4.3 Assignment of Actual Journeys

In order to evaluate the quality of the generated CJMs, it is required to assign each

actual journey to its closest representative. The closeness between Ja and Jr is

measured using the Levenshtein distance [65]. This metric counts the number of

edit operations (i.e., deletions, insertions, and substitutions) required to match

two sequences. Typically, the distance between 〈XYZ〉 and 〈XYYW〉 is 2 (1 insertion

of y , 1 substitution of z → w). The closest representative is the one being of the

smallest Levenshtein distance to the actual journeys. We break ties by assigning

the actual journey to the representative having the less journeys already assigned

to it. When the actual journeys have been assigned to their respective closest

representative, we can start evaluating the quality of the CJMs.

2.4.4 CJM Evaluation Criteria

We define three criteria to evaluate the quality of CJMs: (1) the fitness, (2) the

number of representatives, and (3) the contextual distance. These metrics measure

different aspects of a CJM. Hence, we define that the final average quality of a CJM
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is the weighted mean of these three metrics. Next, we introduce these metrics and

define them.

Fitness. Using the Levenshtein distance [65], fitness quality measures the

distance between the representative sequence and the actual journeys assigned

to it.

F i tness(JA , JR) = 1−
∑|JA |

i=1 mi n|JR |
j=1 (Levenshtei n(σAi ;σRj ))∑|JA |

i=1 Leng th(σAi )
(2.1)

where

σAi : ith actual (observed) sequence in JA

σRj : jth representative contained in JR

Leng th(x) : Number of touchpoints in the sequence x

When an actual journey is strictly identical to its representative journey, the

fitness measure is equal to 1.

Number of Representatives. The more the representative journeys we use,

are the more likely the fitness to be high. Hence, without a metric that allows a low

number of representatives, we would obtain a final CJM with several thousands

of representative journeys. Therefore, the goal of this metric is to keep a low

number of representatives. To guide the algorithm towards an ‘ideal’ number

of representatives, we employ a clustering technique that helps in choosing the

number of clusters. More specifically, we used the Calinski-Harabasz index [24].

Let kh be the optimal number of clusters returned by the Calinski-Harabasz index.

To evaluate the quality, we measure the distance between kR and kh using the

following distribution function:

Number O f Repr esent ati ves(kR ,kh , x0) = 1

1+ ( |kR−kh |
x0

)2
(2.2)

where

kR : number of journeys in JR (i.e., |JR |)
kh : ideal number of journeys according to the Calinski-Harabasz index

x0 : x value of the midpoint

We set the value of the midpoint, x0, to 5 for all our experiments. The intuition

behind this parameter is the following: if we have 11 representative journeys

on a CJM and the ideal number of journeys is 6, we would have a quality of 0.5

(midpoint) because the absolute distance between 11 and 6 is 5. Often, the final

output will have a number of representative journeys that differs from kh . This is

due to the fact that there are other evaluation criteria.
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Contextual Distance. The contextual distance allows us to consider the set

of contextual data C when grouping similar journeys. The more distant the

set of contextual data is between distinct representative journeys, the better

the quality is. To measure the distance, we first build a value frequency table

which counts the number of key:pair per representative. Let define that vi is

the value frequency counter for Jri . For instance, v1 (salary:low:4, salary:high:20,

city:Toronto:3, city:Lausanne:2) means the representative journey Jr1 contains 4

Ja with low salary, 20 with high salary, 3 from the city of Toronto and 2 from the

city of Lausanne. Then, for each pair of representative journeys, we calculate the

cosine similarity, which is defined as:

Contextual Di st ance(v1, v2) = v1 · v2

||v1|| · ||v2||
(2.3)

Finally, the cosine distances are averaged to get the overall contextual distance.

Average Quality. We get the average weighted quality by getting the arithmetic

mean of: the fitness, the number of representatives, and the contextual-distance.

2.4.5 Stopping Criterion

Once we assess the quality of generated CJMs, we assess the stopping criterion. In-

spired by the process mining genetic algorithms, [22, 96], we found three stopping

criteria: (1) a certain amount of generations has been reached, (2) the quality does

not substantially improve anymore, or, (3), a quality threshold has been reached.

Predicting the quality that will be reached by a CJM is difficult. Hence, we believe

that the latter stopping criterion is not advisable. If a stopping criterion is met,

the algorithm stops, returning the best JR . If none of the stopping criteria is met,

we generate new candidates by recursively calling a function that generates the

next population, described in the next section.

2.4.6 Genetic Operations

Before transforming the CJMs, we evaluate and rank them by average quality. We

copy a fraction (i.e., e) of the best CJMs in a set named el i te. In Fig. 2.4, the elite

size is 1. In our experiments, we set the elite size to 5.

By keeping the best CJMs as-is, we ensure that the quality will increase or stay

unchanged. We also generate p −e new CJMs using the following operators. (1)

Addition of a random journey (mutation): A sequence from Topn is added to JR .

(2) Addition of an existing journey (crossover): A journey from the elite population

is added to JR . (3) Deletion of a journey (mutation): A journey is removed from
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S = ⟨DCE⟩
C = {owner:yes}
S = ⟨DDFZ⟩
C = {owner:no}

JG1

JG2

JA1
S = ⟨DCE⟩
C = {owner:yes}

JA2
S = ⟨DDFEZ⟩
C = {owner:no}

JA3
S = ⟨DDFZ⟩
C = {owner:no}

JA4
S = ⟨DDFZ⟩
C = {owner:no}

JA5
S = ⟨CDE⟩
C = {owner:no}

JA6
S = ⟨DCEFZ⟩
C = {owner:no}

noise-free
noise

Jg (Generative Journeys) Ja (generated actual Journeys)

Fig. 2.5 Illustration of how actual journeys are generated from generative journeys.

JR . Nothing happens if JR contains only one journey. (4) Addition of a touchpoint

(mutation): A touchpoint is inserted in one of the existing journeys. (5) Deletion

of a touchpoint (mutation): A touchpoint is removed from JR .

We loop over each of these 5 types of transformations three times. Each time,

the probability of applying the transformation is 10%. It means that the same

transformation might be applied up to three times (with a probability of 0.1%).

At the very least, one transformation has to be applied. If it is not the case, we

loop over each transformation three times again until at least a transformation is

performed.

In Fig. 2.4, JR5 has been produced by taking JR2 and adding a journey picked

from Topn (defined in Sect. 2.4.1). Once new JRs have been created, we return to

the evaluation phase as shown in Fig. 2.3.

2.5 Evaluation Using Synthetic Datasets

In order to evaluate the quality of our approach to return the best set of repre-

sentative journeys in JR , we evaluate the results using a collection of synthetic

customer journeys that includes some contextual data. We first describe how

we generated the dataset. Then, using this synthetic dataset, we evaluate and

compare our algorithm with existing techniques.

2.5.1 Datasets

In order to evaluate the results of our algorithm, we generated synthetic event

logs that simulate journeys using generative journeys. A generative journey is a

known sequence of activities with a known set of characteristics from which we
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generate the event logs. These generative journeys represent the ground truth and

ideally the algorithm should return these as representatives. If we used only those

known generative journeys to produce the dataset, we would get only kG distinct

journeys. From a business point of view, this would describe an ideal situation

where each group of customers behaves in an homogeneous way. However, we

know that this is not the case. Having group of similar journeys that slightly differ

from a representative is a more realistic setting. To achieve this, we add some noise

to the generated journeys. Typically, when the noise level is set to 50%, Ja = Jg

is true for half of the journeys. Fig. 2.5 illustrates how six journeys are generated

from two generative journeys. If we assume that the noise level is defined to be

50%, three actual journeys in the event logs deviate from the original generative

journeys. The goal of our experiments is to retrieve the set of generative journeys,

as representatives, from the produced actual journeys. The 40 generated datasets

as well as details on how we produced them are made publicly available.4

2.5.2 Metrics

To evaluate and compare the quality of representative journeys, we rely both on

external and internal evaluations. External evaluations uses the ground truth.

Since we add some random noise, it might be the case that the ground truth is not

the best solution. For this reason, we also use internal evaluation measures which

are not using the ground truth but rely on cluster analysis techniques. These

metrics are described in [44].

External Evaluation - Distance in the Number of Journeys. Measures the

distance between the number of generative journeys and the number of represen-

tative journeys. We evaluate this metric using the following equation:

N b Jour ne y sDi st ance(kG ,kR) = |kG −kR | (2.4)

External Evaluation - Jaccard Distance. We use the Jaccard distance to mea-

sure the intersection of the generative journeys and the representative journeys. A

generative and a representative journey need to have exactly the same sequence

to be considered in the intersection.

Jaccar dDi st ance(σR ,σG ) = 1− |σR ∩σG |
|σR ∪σG |

(2.5)

4http://customer-journey.unil.ch/datasets/

http://customer-journey.unil.ch/datasets/
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Internal Evaluation - Mean distance [44]. This metric measures the distance

between the actual journeys and their respective representative.

MeanDi st anceScor ei =
∑ki

j=1 D(Si ,Si j )

ki
(2.6)

where

D(x1, x2) : Levenshtein distance between two sequences

ki : Number of journeys attached to the representative i

Si : Representative sequence i

Si j : Sequence of journeys j attached to the representative i

Internal Evaluation - Coverage [44]. This metric represents the density of

journeys in the neighborhood n of a representative. In other words, what is

the ratio of journeys that have less than n edit distance with the representative

journey.

Cover ag ei (n) =
∑ki

j=1 (D(Si ,Si j ) < n)

ki
(2.7)

where

D(x1, x2) : Levenshtein distance between two sequences

ki : Number of journeys attached to the representative i

Si : Representative sequence i

Si j : Sequence of journeys j attached to the representative i

Internal Evaluation - Distance gain [44]. This metric quantifies the gain in

using representative journeys rather than the medoid of the dataset.

Di stGai ni =
∑ki

j=1 D(C (σA ),Si j )−∑ki
j=1 D(Si ,Si j )∑ki

j=1 D(C (σA ),Si j )
(2.8)

where

D(x1, x2) : Levenshtein distance between two sequences

ki : Number of journeys attached to the representative i

Si : Representative sequence i

Si j : Sequence of journeys j attached to the representative i

C (x) : True center of the set of actual journeys
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CJM
(output)

Genetic algorithm: Population size: 100, Elite size: 5
Fitness weight: 5 (ED, cost=1); Nb. of representatives weight: 1; 
Contextual Distance weight: 1
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CJM
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1000 Journeys 
(input)

CJM
(output)

Genetic 2

Genetic algorithm: Population size: 100, Elite size: 5
Fitness weight: 5 (ED, cost=1); Nb. of representatives weight: 1; 
Contextual Distance weight: 0

Build Distance Metrics 
(ED, cost=1)

Fig. 2.6 Approach used to evaluate our clustering algorithm from traditional ap-
proaches.

2.5.3 Settings

We test two settings of the algorithm against traditional approaches. The tradi-

tional approaches are state-of-the-art techniques that are used to cluster and

summarize sets of sequential and categorical data. Fig. 2.6 depicts the approach at

a high-level. As can be seen, with traditional approaches, we first build a distance

metric. We use the Levenshtein distance with a constant cost operation set to 1.

Once the distance matrix is built, we create k clusters. Because we do not know

the number of representative journeys to be found, we test using from 2 to 12

clusters (above 12 it becomes hard to read the CJM) and use the squared Calinski-

Harabasz index described in [24] to return the most statistically relevant. Next,

we get the best representatives using the neighborhood density, the centrality,

the frequency, or the likelihood using Traminer [42]. These techniques do not

use the contextual data. Hence, to allow for a fair comparison, we compare these

techniques with a version of our genetic algorithm that does not use contextual

data and which was presented in [10]. We call this version Geneti c1. We also test

our genetic algorithm with a version that considers the contextual data, called

Geneti c2. Note that both the traditional and genetic approaches use the same

techniques to find kh and the distance is measured using the Levenshtein distance

with a constant cost operation. To account for the fact that the genetic algorithm

is non-deterministic, we run the algorithm ten times for each setting.
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Fig. 2.7 External evaluation. The genetic algorithm that uses the contextual infor-
mation (i.e., Geneti c2) performs best.

2.5.4 Results

Fig. 2.7 shows the external evaluation metrics. It can be seen that the best solution

is the Geneti c2, highlighting that considering the contextual information when

grouping journeys improves the quality. Next, the best solution that does not use

contextual data is Geneti c1 proposed in [10].

The internal evaluation of Fig. 2.8 shows that not only does the genetic algo-

rithm outperforms the traditional approaches, it also proposes a better solution

than the ground truth. This can be explained by the fact that when we inject noise,

we potentially change the optimal solution.

The execution time for one thousand journeys is improved using Traminer

[42] compared to our genetic approach. We compare how the different algorithms

scale when the number of journeys increases. Hence, we ran each configuration

five times with the 40 different datasets. Fig. 2.9 summarizes the results. As can

be seen, the algorithms implemented in Traminer are orders of magnitude faster
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Fig. 2.8 Internal evaluation. The Geneti c2 has the best coverage and mean dis-
tance while Geneti c1 has the best distance gain.
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Fig. 2.9 CPU time for 100, 1’000, and 10’000 journeys.
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than our approach when dealing with 100 or 1,000 journeys. However, note that

our algorithm has a better scaling potential when the number of journeys grows.

All the algorithms tested tend to be slow and will not scale when dealing with

several thousand journeys.

2.6 Experiments Using Real Datasets

This section reports on the experiments with a real dataset, the goal being to illus-

trate how a change in the settings impacts the results. We used a publicly available

dataset5 describing the activities performed throughout the day by Chicago’s cit-

izens. There are 15 types of activities, such as, ‘being at home’, ‘attending class’,

‘going shopping’, or ‘doing households errands’. In the context of this dataset, a

journey is the sequence of activities starting from the morning until the night.

Typically, ‘being at home’ → ‘attending class’ → ‘being at home’ is a journey con-

sisting of three activities. The total number of journeys is 29,541 and there are

123,706 activities (with an average of 4.82 activities per journey). This dataset is

interesting not only for the relatively large number of data points describing life

trajectories, but also because of the available detailed contextual data, such as

information on the citizens’ demographics.

The goal of this experiment is to show the influence of taking the citizen’s age

in consideration when measuring the distance between journeys. Fig. 2.10 shows

the results using three different configurations. In Configuration 1, we did not

leverage the contextual data (i.e., the contextual distance weight is set to 0). We

interpret the resulting CJM as follows. The first journey represents people going to

‘work’, going back ‘home’ at noon, and returning to ‘work’ in the afternoon. The

second journey is close to the first one, the main difference being that people do

not seem to go back ‘home’ at noon. The third journey shows citizens being at

‘home’, going ‘shopping’ twice in the afternoon, and going back ‘home’.

In Configuration 2, we test the effect on the resulting CJM when considering

the ages of the customers. Therefore, we changed the weight assigned to the

contextual distance from 0 to 1. As can be seen in Fig. 2.10, three representative

journeys were generated. Each of these journeys has three touchpoints. They start

from ‘home’ and finish at ‘home’. In between, the first journey has the activity

‘work’, the second one has the activity ‘shopping’, and the last one the activity

‘attending class’. It is interesting to note the effect of the configuration on the

contextual data (the distribution charts on the right side of Fig. 2.10). Indeed,

5www.cmap.illinois.gov/data/transportation/travel-survey. Last visited: 11th of March 2020.

www.cmap.illinois.gov/data/transportation/travel-survey
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while the age was equally distributed for each journey in Configuration 1, we can

observe that the age is discriminant in Configuration 2. For instance, more than

half of the citizens in the journey j3 are under 16 years old, while this population

represents only 8.7% of the entire dataset.

In Configuration 3, we show the effect when we increase the weight put on

the contextual distance parameter. Journeys j1 and j3 are identical to those in

Configuration 2. However, a new and rather complex journey j2 emerges. We

observe that the distribution is impacted when giving more weight to homogeneity.

We interpret the result as follows: Citizens younger than 29 years old tend to have

two typical patterns of activities involving either ‘school’ or ‘entertainment’ while

the most typical journeys for the other citizens involve ‘work’.

Of course, this is an extremely simplified overview of the data. For the al-

most 30,000 actual journeys in the event logs, there are numerous unique actual

journeys that differ from the representative journeys we get from these three

configurations. By letting the business analyst choose the weight for each param-

eter, we let them explore different perspectives of the data. We claim that the

best parameters depend on the dataset, the business context, and the goal of the

exploration.

2.7 Conclusion

Our genetic approach to summarizing a set of customer journeys with the purpose

of displaying them on a CJM offers an interesting alternative to approaches used

in social sciences for three reasons. First, the quality of the results is better, which

is true using both internal and external evaluation metrics. Second, the weights

of the three quality criteria are a flexible way to analyze a dataset under different

perspectives. All the other parameters, such as the number of representative

journeys to display or the length of the representative journeys are left entirely to

the genetic algorithm. Third, in addition to the sequence of activities, our genetic

algorithm can leverage contextual data to group similar journeys. By doing so, we

provide a way to summarize insights from customers that are hidden in the data.

We tackle the challenging task of building a CJM from event logs as a single-

objective optimization problem so that a single ‘best’ CJM is returned. Due to

the inherent conflicting objectives of the quality criteria, we acknowledge that a

multi-objective approach might be a relevant choice that we did not investigate.



Chapter 3

CJM-ex: Goal-oriented Exploration of

Customer Journey Maps using Event

Logs and Data Analytics

Abstract. Customer Journey Mapping (CJM), is an emerging area of

research tackling issues related to customer behavior and customer

journeys when consuming a service. The increasing complexity of the

service industry makes this type of tools popular amongst practitioners.

However, to date, it is not clear how a CJM can be used to depict hun-

dreds or thousands of customer journeys. Inspired by process discovery

techniques – borrowed from Process Mining – we present CJM-explorer

(CJM-ex). CJM-ex is a web interface that uses hierarchical clustering

and statistical indexes to allow interactive navigation, with or without

a-priori information, through numerous journeys stored in standard

event log formats. The exploration of the underlying journeys can be

done in the whole set of data available or driven by user goals in order

to examine events and patterns in specific areas of interest.

3.1 Motivations

In order to deliver great service, companies need to have an understanding of

the quality of customer experience at an end-to-end level [12, 50]. The ever

growing amount of services offered to users for consumption has made the ability

to understand their behavior very important [63]. Similarly important is the

knowledge extracted by the increasing number of ways organizations interact with

their customers; e.g., a customer might visit a physical store, purchase a product

online, and provide feedback on social media. As a response, new customer-
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centric approaches have surfaced. The customer journey map (CJM) is an example

of such new techniques. CJMs allow for better understanding of a customer’s

end-to-end experience when using a service by mapping any interactions with

the company (called touchpoints) on a map that ultimately contributes to better

understanding and serving customer needs.

In our previous work, [6] (Chapter 1 of this thesis), we discussed the benefit of

bringing customer journey mapping and process mining together by proposing a

CJM model that can be used with process mining techniques. More specifically,

CJM-ex aims at providing a solution to explore numerous customer journeys

at the same time. Similar to discovery techniques used in process mining, our

algorithm takes event logs as input, without using any a-priori information [94].

However, instead of outputting a business process model (BPM), we display the

journeys onto a CJM. For a complete definition of process mining and event logs,

the reader is referred to the well known Process Mining Manifesto [95]. Visualizing

event logs on CJMs, instead of BPMs, exhibits two interesting features. First,

CJMs focus more on personal customer activities (e.g., by incorporating customer

emotions), rather than the “internally-focus problem-solving approach” of BPMs,

[90]. Second, contrary to BPMs, CJMs can incorporate customer journeys that

are deemed exceptional behaviors, rather than removing them to increase model

readability.

Despite these interesting features, representing many customer journeys onto

a CJM in an intelligible manner remains a challenge. Current research typically

limits the number of journeys to be compared to less than ten, making the overall

process relatively straightforward. However, we argue that companies in the ser-

vice industries tend to deal with hundreds or thousands of journeys. To overcome

this challenge and identify different areas of interest, a hierarchical clustering

algorithm is employed to segment the original data. The hierarchical nature

allows for a top-down navigation of automatically generated groups of similar

journeys. Once the clusters are formed, CJM-ex is able to leverage the contextual

information that comes along a typical customer journey such as the customers’

characteristics, or the emotions, [6]. It does so in two different ways. First, we

employ statistical indexes in order to explain why the different clusters were gener-

ated. Second, we let the users define their own exploration goals, making CJM-ex

the first goal-oriented tool that allows analysts to set a-priori goals to guide their

journey exploration.

We implemented CJM-ex, which aims to: 1) show how numerous event logs

can be displayed onto CJMs; and 2) let users navigate into these journeys. The
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Fig. 3.1 Hierarchical clustering of journeys.

next section introduces our tool, while the third section highlights the key parts of

its technical implementation. We conclude by providing an outlook.

3.2 CJM-ex

The main objective of CJM-ex is to let business analysts upload and explore their

own dataset using a customer journey map layout. To limit the number of jour-

neys displayed on the same CJM and allow their intuitive exploration, we took a

hierarchical clustering approach, as illustrated in Fig. 3.1. Each letter represents

an activity and the tree is built bottom up by merging the activities that are most

similar at each iteration. By default, our hierarchical algorithm uses a proximity

measure that takes into account the order of activities and is a variant of the

Jaccard similarity based on shingles [20]. In our clustering tree (or dendrogram),

the journeys seen in the event logs are at the leaf level and as they get merged they

form “representative” journeys (defined in Chapter 2). A representative journey is a

single pattern of activities whose purpose is to summarize the patterns contained

in a cluster. Because the representative journeys at the top of the tree summarize

many – potentially distant – journeys, it will tend to show only few activities shared

by many. In contrast, the representative journeys closer to the leafs will show more

details. Borrowing a cartographic metaphor from [94], the first layers show general

patterns and hide less important activities – like a world map would omit small

cities. However, our application allows a drill-down into ‘countries’ of interest

(i.e., pattern of activities), which would redirect to new CJMs where the previously

hidden ‘cities’ (i.e., omitted activities) will be shown.

CJM-ex is accessible at http://customer-journey.unil.ch/cjm-ex/, where we also

provide a screencast explaining its usage. The screenshot visible in Fig. 3.2 points

out three views that are available to navigate the clusters. Each of these views

fullfills specific objectives. First, the CJM view ➊ shows journeys that are in the

same cluster. This representation allows to easily compare the pattern of activities.

http://customer-journey.unil.ch/cjm-ex/
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Fig. 3.2 Interface pointing to three views: ➊ CJM, ➋ tree and, ➌ textual boxes.

Second, the tree ➋ displays the hierarchical structure of the journey clusters –

useful in providing a holistic view of the clusters and where we currently are. Third,

a box per cluster ➌ provides a convenient means to display statistical indexes that

we named “salient characteristics”. The salient characteristics is the top 5 results

of a chi-square test applied on all the contextual information. For instance, if at

a global level (the entire dataset) the number of women is equal to the number

of men, it might be surprising to find a cluster with large minority / majority of

women. Therefore, this information might come up as one of the top 5 salient

characteristics.

Moreover, the user might be interested in specific characteristics occurring

during the journey. For this reason, we allow user-defined goals. For instance,

one might be interested in journeys that started by the activity “attending class”

experienced by young people. The top part ➀ of Fig. 3.3 displays the goal which

is typically set by a business analyst, while the bottom part ➁ shows that some

branches of the tree are interesting with regards to the goal (red “hot” area at

the top). Hence, our application allows navigation without using any a-priori

information, but also setting navigation goals, and guidance by the resulting

colors.
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Fig. 3.3 Interface to add a goal, ➀, and impact on the tree, ➁.

Finally, when moving from one view to the others, the three views are updated

synchronously, allowing a smooth exploration amongst journeys.

3.3 Implementation

CJM-ex is build around four main elements: (1) a web interface; (2) the XES-parser;

(3) Hcluster; and (4) a data warehouse. We will describe the main parameters and

choices we made for each of them.

Web interface. The web interface leverages bootstrap,6 jQuery,7 and d3js8

to provide a user-friendly interface to upload and navigate journeys. Both the

CJM view and the tree view are implemented in d3js. The CJM view is our own

implementation, while the tree is an adaptation of existing code.9

XES Parser. CJM-ex works with event logs. More specifically, we leverage the

XES (eXtensible Event Stream) standard born within the process mining taskforce.

The XES Parser is a Java implementation that encapsulates the OpenXES library10

6http://getbootstrap.com/. Last visited: 18th of March 2020.
7https://jquery.com/. Last visited: 18th of March 2020.
8https://d3js.org/. Last visited: 18th of March 2020.
9http://bl.ocks.org/robschmuecker/7880033. Last visited: 11th of March 2020.

10http://www.XES-standard.org/openXES/start. Last visited: 18th of March 2020.

http://getbootstrap.com/
https://jquery.com/
https://d3js.org/
http://bl.ocks.org/robschmuecker/7880033
http://www.XES-standard.org/openXES/start
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Fig. 3.4 Data preprocessing phase.

to parse XES file. Use of this open source software ensures that our application is

strictly compatible with the XES standard.

Hcluster. Hcluster is a Python implementation containing the three steps

illustrated in Fig. 3.4. The first one is the hierarchical clustering implemented

using Scipy.11 Two parameters should be provided as inputs: the distance measure

between event sequences and the methods for calculating the distance between

clusters. They can both be chosen by the user when uploading a dataset (see

Fig. 3.5). While further research is needed to understand why these differences

exist, it seems that using shingles, [20], as a distance metric provides a more intu-

itive way to navigate through journeys. Once the hierarchical cluster is formed,

the next step consists of cutting the clustering to form layers. A layer is a set of

predetermined number of journeys that will be grouped together and will ulti-

mately appear on the same CJM. To achieve this, we developed an algorithm that

recursively cuts the dendrogram returned by Scipy. A small number of journeys

will lead to a simple CJM that is easy to visualize, but in more complex tree struc-

tures (i.e., trees with larger height). Finally, the last step consists of finding the

representative journey using a frequent sequences mining algorithm.12

Data Warehouse. Each dataset is saved in its own database schema designed

as a star schema. It stores all the information required to use the application (e.g.,

clusters, journeys, events) as well as some precomputations. For instance, we

11https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html.
Last visited: 18th of March 2020.

12https://github.com/bartdag/pymining/blob/master/pymining/seqmining.py

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://github.com/bartdag/pymining/blob/master/pymining/seqmining.py
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Fig. 3.5 Preview of the parameters when uploading a dataset.

count the number of occurences for each characteristic at each cluster, so the

goals and the salient characteristics can be retrieved quickly.

Altogether, the parameters visible in Fig. 3.5 allow users to explore the exact

same dataset from different perspectives.

3.4 Discussion and Outlook

With CJM-ex, we have demonstrated that many journeys can be displayed onto

CJM in an intelligible and efficient manner, offering an alternative to a BPM

representation. As Gartner highlighted, CJMs should be used to complement,

but not to replace, BPMs, [76]. By leveraging a standard born within the process

mining taskforce (i.e., XES) and by mimicking a typical process mining activity (i.e.,

discovery), we bring these techniques closer together. However, further research

is required to fully understand how they can complement each other. This is a

call to the process mining and business process management communities to

consider CJMs as an integral part of the process management toolkit.

Note that we discuss the limitation in terms of evaluation of this chapter in

the conclusion of the thesis (page 86).





Chapter 4

CJM-ab: Abstracting Customer

Journey Maps using Process Mining

Abstract. Customer journey mapping (CJM) is a popular technique

used to increase a company’s understanding of their customers. In its

simplest form, a CJM shows the main customer journeys. Complex cus-

tomers’ journeys are difficult to apprehend, losing the benefit of using a

CJM. We propose CJM-ab (for CJM abstractor) a solution that leverages

the expertise of process discovery algorithms from the process mining

discipline to abstract CJMs. Our tool, CJM-ab, can leverage process

mining models, namely process trees, and business owners’ knowledge

to semi-automatically build a CJM at different levels of granularity. We

applied our approach to a dataset describing a complex process, and

shows that our technique can abstract it in a meaningful way. By doing

so, we contribute by showing how process mining and CJM can be put

closer together.

4.1 Introduction

A customer journey map (CJM) is a conceptual tool used to visualize typical cus-

tomers’ journeys when using a service. In their simplest form, CJMs show the

interactions between a customer and a service provider through time. A series

of interactions is called a journey. Because CJMs give a company a better under-

standing of their customers, they are becoming increasingly popular amongst

practitioners. A CJM can be used as a design thinking tool by internal stakeholders

to anticipate the best – or worst – journeys possible. Such journeys, displayed on

a CJM, are called the expected journeys. However, customers might experience

a different journey from the one anticipated. For this reason, in chapters 2 to 3,
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Fig. 4.1 Three possible ways of displaying the handling of reviews for a journal from
[92] on a CJM: ➊ projecting the actual journeys (only the first 100 – out of 10,000
– journeys are displayed); ➋ using two representative journeys; and, ➌ using
two representative journeys and abstracting the activities using the technique
presented in this paper.

we propose leveraging traces left by customers in information systems to build

CJMs from evidence. Because the journeys that will be displayed on the CJM are

produced from facts, we refer to them as the actual journeys. Such approaches

are in line with the urgent call from the authors Lemon and Verhoef to take a

data-driven approach to map the customer journey [63].

However, when dealing with numerous journeys, it becomes unrealistic to

display all the actual journeys on a single CJM. For illustration purposes, Fig. 4.1

depicts 10,000 instances of the traces related to the handling of reviews for a

journal, a synthetic dataset available in [92]. In the context of this dataset, the

service provider is the conference’s organizing committee, the customers are the

researchers submitting their papers, and a journey describes the handling of

the reviews, from the submission until the final decision. In Fig. 4.1, part ➊, it

is difficult to apprehend the typical journeys of the reviewing process. To this

end, representative journeys have been introduced as a means of reducing the

complexity. Indeed, the central CJM (➋) uses two representative journeys to

summarize 10,000 actual journeys. Although representative journeys decrease

the complexity by reducing the number of journeys, a CJM might still be difficult

to apprehend when it is composed of many activities. Indeed, even though only

representative journeys are used, quickly spotting the main differences between

the two journeys visible in ➋ (Fig. 4.1) is not straightforward due to the high

number of activities and the length of the journeys.

We propose CJM-ab (for CJM abstractor) a solution that leverages the expertise

of process discovery algorithms from the process mining discipline to abstract

CJMs. More precisely, we take as an input a process tree, we parse it, starting from

the leaves, and iteratively ask the end-user if it is relevant to merge the activities
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X + X

A B C D E F G τ

Fig. 4.2 One of the possible process trees given the event log T = {〈BDCEF〉,
〈ACDEFG〉, 〈BCDEFGG〉}.

that belong to the same control-flow, and, if so, to provide a name for this group

of activities. By doing so, we let the end-user decide which activities should be

merged and how they should be renamed. Then, one can visualize the same CJMs

at different levels of granularity using a slider, which is visible in Fig. 4.1, part ➌.

At a certain level of granularity, we clearly observe, given the end activities, that

one representative journey summarizes the accepted papers, while the other one

depicts the rejected papers. The importance and originality of CJM-ab is that it

explores, for the first time, a seamless integration of business process models with

customer journeys maps.

The chapter is organized as follows. Chapter 4.2 introduces process mining

and the process discovery activity. Chapter 4.3 describes our algorithm, and

Chapter 4.4 provides a demonstration. Finally, Chapter 4.5 opens a discussion

and concludes the chapter.

4.2 Background

4.2.1 Process Mining and Process Discovery

Our approach is a seamless integration of Process Mining with Customer Journey

Mapping and showcases the impact that the latter can have in the analysis of

journeys. Process mining is an emerging discipline sitting between machine

learning and data mining on the one hand, and process modeling and analysis on

the other [94]. In this research, we focus on the discovery of process models, one

of the three types of process mining along with conformance and enhancement.

The idea behind the discovery of process models is to leverage the evidence

left in information systems to build process models from event logs. The resulting

process models are, therefore, based on factual data, showing how the process

was really executed. To build such a model, process mining uses an input data

format called event logs. An event log is a collection of traces, a trace being a single

execution of a process composed of one or multiple activities.
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For illustration purposes, let T = {〈BDCEF〉,〈ACDEFG〉,〈BCDEFGG〉} be an event

log composed of 3 traces and 7 distinct activities. Regardless of the notation, the

resulting models can express the control-flow relations between activities. For

instance, for the event log, T , the model might express the following notation: (1)

A and B are in an XOR relation (×); i.e., only one of them is executed; (2) C and D

are executed in parallel (+); i.e., both activities are executed in any order; (3) E

and F are in a sequence relation (→); i.e., F always follows E; (4) G is in a XOR loop

(Combination of × and ⟲); i.e., it can be executed 0 or many times. Note that τ

denotes a silent activity. It is used to correctly execute the process but it will not

result in an activity which will be visible in the event logs. Fig. 4.2 displays the five

aforementioned relations using a process tree.

Discovering a process model from event logs is challenging. Indeed, process

mining algorithms need to be be robust enough to generalize (to avoid overfitting

models) without being too generic. They should also try to build process models

that are as simple as possible [2]. Many representations exist to express the

discovered process models: Petri nets, process trees, or bpmn models, to name

a few. The next section introduces the notation used by our algorithm: process

trees.

Process Tree.A process tree is an abstract hierarchical representation of a

process model introduced by Vanhatalo et al. [98], where the leaves are annotated

with activities and all the other nodes are annotated with operators such as ×
[59]. One interesting characteristic of process trees is that they guarantee the

soundness of the models, i.e., all activities can be executed and the end of the

process can be reached. The soundness guarantee is one reason that we choose

the process tree notation. There are also three other reasons. First, process models

in block structure achieve best performance in terms of fitness, precision, and

complexity [2]. Second, the hierarchical structure of process trees is ideal to derive

multiple levels of granularity. Finally, according to Augusto et al. [2], process

trees are used by top-performing process model algorithms, such as the inductive

miner [60–62] or the Evolutionary Tree Miner [23].

4.2.2 Customer Journey Discovery

In [6] (Chapter 1), we proposed a process mining based model that allows us to

map a standard event log from process mining (i.e., XES [47]) to store customer

journeys, a first attempt to bring customer journeys and process mining closer

together.
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Similar to how process discovery algorithms discover process models, we aim

to discover a CJM from event logs. Instead of describing the control flows of activi-

ties using a business process model, the main journeys (i.e., the representative

journeys) are shown using a CJM. It encompasses three important challenges.

First, the number of representative journeys needs to be set (k). Looking at

➊ from Fig. 4.1, it is difficult to say how many representative journeys should be

used to summarize the data. We identify two ways to solve this challenge. The

number of representative journeys can be set manually, or it can also be set using

standard model selection techniques such as the Bayesian Information Criterion

(BIC) penalty [81], or the Calinski-Harabasz index [24].

Second, once k has been defined, actual journeys should be split in k clusters

and a representative journey per cluster must be found. One of the ways, pre-

sented in Chapter 3, is to first define a distance function between actual journeys,

such as the edit distance, or shingles, and to build a distance matrix; then, to split

the actual journeys in k groups using hierarchical clustering techniques.

Third, one need to define the k representative journeys. They can be found

using a frequent sequence mining algorithm [5], by counting the density of se-

quences in the neighborhood of each candidate sequence [44], by taking the most

frequent sequences [44], or by taking the medoid [44]. Instead of inferring the

representative from the distance matrix, it is also possible to obtain it using statis-

tical modeling [44]. We can employ an Expectation-Maximization algorithm on a

mixture of k Markov models, and then for each Markov model the journey with

the highest probability becomes the representative [49].

The next section describes a novel way to leverage business process models to

abstract customer journey maps.

4.3 Abstracting Customer Journeys using Process Trees

CJM-ab uses four steps to render a CJM at different levels of abstraction. They are

depicted in Fig. 4.3. This chapter introduces each step. In the first step, the goal is

to build a process tree given an event log. This can be done using the technique

introduced in Chapter 4.2.1. Next, using the same event log, the goal is to build a

CJM using the technique introduced in Chapter 4.2.2.

The third step consists of parsing the tree obtained in step 1. We use a reverse

breadth-first search, i.e., we traverse the operators in the tree from the lowest ones

to the root in a level-wise way. At each operators of the process tree, we offer the

opportunity to the end-user to merge the leaves under the operator. If the user

chooses to merge the activities, she should provide a new name and the operator
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Fig. 4.3 Rendering a CJM at different levels of abstraction in four steps.

virtually becomes a leaf. If the end-user chooses not to merge the activities, we

keep the leaves intact. Otherwise, we keep the activities separated at all levels of

granularities, and we also disable the parents’ steps. Indeed, we postulate that if a

user does not want to merge two activities at a low level of granularity, it does not

make sense to merge them later at a higher level of granularity.

Input :c j m, customer journey map
λ, level of abstraction
pt , process tree annotated with merging decisions

Output :c j mλ, cjm at the level of abstraction λ
1 Function GetLevelAbstraction(c j m, λ, pt)
2 for i ← 0 to λ do
3 c j m → Abstract(c j m, pt .oper atori ) // Renaming the activities according to the

merging decisions

4 return c j m

5 Function Abstract(c j m, op)
6 foreach j our ne y in c j m do
7 j our ne y .replace(op.leaves, op.new_name, removeSeqRepeats=True )

8 return c j m

Algorithm 1: Function to get to the level of complexity λ.

Finally, in step 4, we transform the CJM at different levels of abstraction.

Let λ be the number of abstractions which will be available for a CJM. It can

be seen as the number of steps that will be included in the sliders visible in

Fig. 4.1, part ➌. Note that λ is equal to the number of times the end-user decides

to merge the activities. Let oper atorλ be the λth operator to be merged. Let

GetLevelAbstraction(c j m, λ, pt ) be a function that returns a CJM at the λth level

of abstraction. Algorithm 1 shows how the function Abstract is recursively called to

get to the level of abstraction λ. The parameter removeSeqRepeats in Algorithm 1

in line 7 emphasizes that continuous sequence of activities that are to be replaced,

will be replaced by only one instance of the new name given for this operator.

For instance, if the journey is "AABCBAC", the leaves that are to be replaced, are

"A" and "B" and the new name is "X", the journey will become "XCXC". This

reduces the length of the journeys and, thus, increases the abstraction. One can
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Fig. 4.4 Process tree annotated with the order in which the operators are parsed
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go back from more abstract to fine granular again by calling GetLevelAbstraction()

again with a smaller λ. The next section illustrates these four steps with a running

example.

4.4 Demonstration

This section provides a running example of our developed tool. The running

example is based on synthetic event logs describing the handling of reviews for

a journal (from [92]) cited in the introduction. It contains 10,000 journeys and

236,360 activities. This demonstration is available on http://customer-journey.

unil.ch/cjm-ab/. In the first step, we obtained a process tree by using the inductive

miner [59] with default parameters.13 It results in the process tree visible in Fig. 4.4.

In the second step, we obtain a CJM by: (1) measuring the distance between actual

journeys using the edit distance; (2) building a dendrogram using a hierarchical

clustering algorithm; (3) finding k using the Calinski-Harabaz Score (k=2); (4)

finding representative journeys using the function ‘seqrep’ available in Traminer,

a R package.14 It results in a CJM which is visible in ➋ (Fig. 4.1). In the third step,

we parse the XML in javascript. To traverse the tree, we are using a tree-like data

structures 15. The order in which the operators are parsed is depicted in Fig. 4.4

(i.e., ‘step’). Fig. 4.4 shows that we decided to merge 7 out of the 9 operators (in

green in Fig. 4.4). Note that we decided not to merge the activities ‘reject’ and

13Using the software ProM available at http://www.promtools.org/doku.php. Last visited: 18th
of March 2020.

14Available at: http://traminer.unige.ch/doc/seqrep.html. Last visited: 18th of March 2020.
15Available at: https://github.com/joaonuno/tree-model-js. Last visited: 11th of March 2020.

http://customer-journey.unil.ch/cjm-ab/
http://customer-journey.unil.ch/cjm-ab/
http://www.promtools.org/doku.php
http://traminer.unige.ch/doc/seqrep.html
https://github.com/joaonuno/tree-model-js
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Fig. 4.5 Screen shot of the application during the merging process at ‘step 1’.
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Fig. 4.6 Results at the levels of abstraction 1, 3, and 7.

‘accept’, which disabled the option of merging all the activities below step 9. The

Fig 4.5 shows a screenshot of the application when merging the activities during

step 1. Finally, the Fig. 4.6 shows the resulting CJMs at three levels of abstraction.

4.5 Conclusion

CJMs are being used more and more to help service providers put themselves in

their customers’ shoes. However, very little research has investigated automated

ways of building them. We contribute by showing how a process mining model

can be used to guide the abstraction of a CJM. By answering few questions about

the merging of the activities and by playing with the abstraction sliders, we antici-

pate that our tool allows practitioners to gain new insights about their data. By

leveraging process trees – a format built within the process mining community –

we can bring customer journey analytics and process mining closer together. We

expect that many algorithms and works from process mining are relevant for the

discovery of customer journeys.

Note that we discuss the limitation in terms of evaluation of this chapter in

the conclusion of the thesis (page 86).



Chapter 5

Truncated Trace Classifier. Removal

of Incomplete Traces from Event

Logs.

Abstract. Process mining can analyze event logs to extract fact-based

insights about business processes. However, performing analysis on

event logs that contain truncated (also called incomplete) traces is prob-

lematic because their presence negatively impacts the process mining

outcomes. We propose the Truncated Trace Classifier (TTC), an algo-

rithm that distinguishes truncated traces from completed ones. We

benchmark 5 TTC implementations that use either LSTM or XGBOOST

on 13 real-life event logs. Accurate TTCs have great potential. In fact,

filtering truncated traces before applying a process discovery algorithm

greatly improves the precision of the discovered process models, by

9.1%. Moreover, we show that TTCs increase the accuracy of a next

event prediction algorithm by up to 7.5%.

5.1 Introduction

The execution of a business process often leaves trails in information systems

called event logs. Using these event logs, process mining techniques can extract

data-driven insights about business processes. For example, it is possible to

discover process models from event logs [62], to predict the next event [8, 85], or

to assess whether an ongoing process will fulfill a time constraint [35].

A truncated trace is a trace where the last events are missing. In fact, these

events happened or will happen, but they are not available at the time of the

analysis. The presence of truncated traces in event logs is acknowledged by
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researchers [16, 40, 94, 100]. Interestingly, organizers of the latest edition of the

Process Discovery Contest [25]–a contest where participants have to infer process

models from event logs–have included truncated traces to make the synthetic

event logs more realistic.

We propose a Truncated Trace Classifier (TTC) that distinguishes truncated

traces from the ones that are not truncated. We refer to the latter as the ‘complete

trace’. We foresee three benefits of using a TTC. First, a TTC can filter truncated

traces. This is important because the success of process mining depends on the

quality of the input event logs [18, 29, 84, 93]. Second, a TTC helps to increase

operational efficiency. For instance, a ticket in a call center might stay open for

several days because an agent forgot to close it or because the customer did not

follow up on a requested action. Using a TTC, we could avoid the manual task of

closing them by doing it in an automated manner. Third, a TTC has potential that

goes beyond filtering techniques. For instance, we show in this work that a TTC

can improve the accuracy of predicting the next event.

It is not uncommon to read that truncated traces can be filtered out by looking

at the very last event [16, 40, 94, 100]. For example, a ticket is complete only when

the activity ‘closing the ticket’ happens. However, such a closing event might not

exist. Instead, a recurring one might occur [82]. For instance, the event ‘delivering

package’ might be a good indicator to predict that an order is fulfilled, but it might

reoccur if some items are being shipped separately. In such a case, relying on

the very last event will result in a poorly performing TTC. This observation is in

line with the conclusion drawn by Conforti et al. that existing techniques to filter

traces are often simplistic [29].

To the best of our knowledge, we are the first work focusing on building an

accurate TTC. Our contributions are the following: (1) We propose five machine

learning-based TTC implementations. (2) We benchmark these five implemen-

tations and a baseline approach using 13 event logs. (3) We highlight the benefit

of using a TTC for two process mining tasks, that of process discovery and next

event prediction.

The rest of this chapter is organized as follows. In Chapter 5.2, we provide

an overview of process mining and define truncated traces. In Chapter 5.3, we

propose several approaches to building a TTC, which we benchmark in Chap-

ter 5.4. Chapters 5.5 and 5.6 demonstrate the value of a TTC by showing how it

can increase the process model precision and next event prediction, respectively.

In Chapter 5.7, we discuss related work and we conclude in Chapter 5.8.
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5.2 Preliminaries

In this section, we briefly introduce the process mining discipline. Then, we define

truncated traces.

5.2.1 Process Mining

Process mining brings data science and business process management closer

together [94]. As stated in the process mining manifesto, the starting point of

process mining is an event log [93]. An event log contains traces, which are

sequences of events. Event logs often contain additional information such as a

timestamp or the resource. We will use the simple event log definition introduced

in [94]. A simple trace σ is a sequence of events. A simple event log L is a multi-set

of traces. For example, L = [〈abc〉3,〈ab〉2] is an event log containing 5 traces and

13 events. Taking an event log as input, several process mining techniques are

available. Typically, a process discovery algorithm such as the inductive miner,

[60], can infer the most likely business process model behind an event log. To

ensure that process mining works well, event logs need to be noise-free [29, 84, 93].

Truncation is one type of noise [33], which we introduce in the next section.

5.2.2 Truncated Traces

A truncated trace is an ongoing trace where the end of the process is missing.

Truncated traces are sometimes referred to as ‘incomplete cases’ [40, 100], ‘in-

complete traces’ [16], or ‘missing heads’ [84]. We favor the term truncated over

the term incomplete as the latter is often used for the concept of ‘event log incom-

pleteness’, referring to the fact that an event log will most likely not contain all

the combinations of behaviors that are possible because there are too many of

them [93]. For instance, when there is a loop in the process model, the number of

unique combinations is infinite. Event logs will most likely be incomplete while

they may not contain truncated traces.

There are several reasons to explain the existence of incomplete traces. They

might exist because of a flawed event log extraction process that cuts the traces

at a fixed date, leaving the traces that finish after truncated. This issue–named

‘the snapshots challenge’–has been identified by van der Aalst as one of the five

challenges that occurs when extracting event logs [94, chapter 5.3]. This type of

truncated trace could be avoided by extracting only the traces where no event

happens after the extraction date. However, once the data is extracted, we cannot

know which traces are truncated. As another example, incomplete traces can
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Fig. 5.1 The traces 〈abc〉 and 〈acadd〉 result in eight samples.

exist because the events have not happened yet. This is especially relevant when

working with streaming data. Finally, truncated traces can result from a wrong

execution (e.g., the ticket was supposed to be closed but the agent forgot to do it)

or when the information system fails. In the next section, we introduce a classifier

to automatically detect truncated traces.

5.3 Truncated Trace Classifier

A TTC inputs the current execution of a trace and predicts whether it is truncated.

As shown in Table 5.1, we generate one input sample and one target for each prefix

length of each trace. The input sample represents the current state of the process

on which we apply a TTC. The target is a binary label that is ‘true’ when the trace

is truncated or ‘false’ otherwise.

This setting implies that ‘real’ truncated traces that we would like to identify as

such using the TTC would be labeled as complete. However, our intuition is that

the model will also learn from similar complete traces where the truncated parts

will be labeled as ‘truncated’. For illustration purposes, let us define the following

event logs: 〈abc3, ab〉. During the training phase, the sequence ab appears three

times as ‘truncated’ and once as ‘complete’. Hence, during the prediction phase,

the sequence ab would most likely be predicted as ‘truncated’.

To build a classifier, we need to map the input sample to a feature space.

There are several options to do so, covered in depth in [64, 100–102]. We provide

non-exhaustive examples that are illustrated in Fig. 5.2.

Last Event. Relying only on the last event to predict that a trace is truncated

is one option often mentioned in the literature [16, 40, 94, 100]. For example, the

input for sample #3 from Fig. 5.1 would be ‘c’.
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Fig. 5.2 Illustration of the feature spaces for the input samples 〈aca〉 and 〈acad〉.
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Fig. 5.3 Five implemented TTCs.

Frequency. The ‘frequency’ feature space counts the occurrences of each

event. As shown in Fig. 5.2, 〈aca〉 becomes {a:2,b:0,c:1,d:0}. This feature space

does not record the order in which the events appear.

Sequence Tensor. A sequence tensor contains an extra ‘timestep’ dimension.

Each timestep is a matrix similar to the ‘last event’; i.e., it describes which event

happens. The extra dimension allows to describe the full sequence of timesteps in

a lossless way. The number of timesteps is equal to the longest sequence in the

event logs.

Once the input samples have been mapped into a feature space, it can be fed

together with the target to a classifier. We propose five TTC implementations

depicted in Fig. 5.3. As can be seen in Fig. 5.3, We also add a few base features:

(1) the number of activities in the prefix, (2) the number of seconds since the

first event in the trace, and (3) the number of seconds since the previous event in

the trace. Such extra features were also added in the predictive business process

monitoring proposed by Tax et al. [85]. The five TTCs are described below.
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1 LA (Last Activity). This TTC relies on the last activity to predict that the trace

is truncated.

2 FB (Frequency Based). This TTC uses the ‘frequency’ feature space described

in Section 5.3.

3 FB&LA. This TTC concatenates the TTCs ‘1 LA’ and ‘2 FB’ because they both

convey complementary information.

4 Soft (Softmax). This TTC corresponds to a next event prediction algorithm. In

fact, the implementation is similar to the predictive business process monitoring

from Tax et al. [85]. Predicting which event will occur is a multi-class prediction

problem. Thus, we rely on the Softmax function because it transforms the output

to a probability distribution. The end of the process is treated as any other event.

If the latter is predicted as the most likely next event, we predict that the trace is

complete. If not, we predict that the trace is truncated.

5 Sig (Sigmoid). The TTC ‘5 Sig’ turns the multi-class problem into a binary

one by using a one-vs-all strategy with the special ‘end’ event. We implemented

both TTCs to compare the accuracy when the neural network is specially trained

to recognize truncated traces (‘5 Sig’) or when the task is to predict the next event

(‘4 Soft’).

TTCs 1 to 3 use XGBoost16 [26], which stands for eXtreme Gradient Boosting.

It relies on an ensemble of decision trees to predict the target. This technique is

widely used among the winning solutions in machine learning challenges [26]. For

the main settings, we set the number of trees to 200 and the maximum depth of the

trees to 8. The last two TTCs rely on a neural network implemented in Keras [28].

As shown in Fig. 5.3, the architecture has two inputs. First, the sequence tensor is

passed to a Long Short-Term Memory (LSTM) network. LSTM is a special type of

Recurrent Neural Network (RNN) introduced in [52]. Compared to RNN, LSTM

possesses a more advanced memory cell that gives LSTM powerful modeling

capabilities for long-term dependencies [85]. The output of the LSTM network

and the base features are provided to a fully connected layer. Both the LSTM

network and the fully connected layer have 16 cells. We use Adam [55] as an

optimizer and we set the number of epochs to 100.

5.4 Benchmark

In this section, we benchmark the five TTCs described in the previous section, in

addition to a baseline approach.

16Available at https://github.com/dmlc/xgboost/tree/master/python-package

https://github.com/dmlc/xgboost/tree/master/python-package
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5.4.1 Datasets

We used 13 event logs17 well known in the process mining literature. The event

logs come from “real-life” systems, offering the advantage of containing complex

traces and a wide range of characteristics visible in Table 5.1.

To the best of our knowledge, these event logs do not contain truncated traces.

However, this is difficult to confirm. For instance, exceptional events might hap-

pen several months after the event log extraction date. In general, without having

a deep expertise of the domain under analysis and direct access to the person

in charge of the dataset extraction, it is not possible to guarantee that all traces

are complete. We use the term ‘false complete’ to refer to traces that we wrongly

consider complete during the training phase but that are in fact truncated be-

cause more events will happen. We claim that a TTC should be resilient to ‘false

complete’. In other words, a TTC should not overfit on a single ‘false complete’

and wrongly classify all similar traces as complete.

To test the resilience of the TTCs, we generated 0%, 10%, and 20% of ‘false

complete’ traces by randomly cutting them. The setting with 0% of ‘false complete’

reflects how the TTC should be used with a real dataset, i.e., considering all the

traces as complete. For the two other settings, we kept track of the traces that are

truncated and refer to them as ‘ground truth’. To benchmark the various TTCs,

we use the ground truth. For instance, let us define that 〈abc〉 is a complete trace

that we randomly cut to become the following ‘false complete’: 〈ab〉. During the

training phase, we train the classifier to consider 〈ab〉 as a complete trace, while

during the evaluation 〈ab〉 should be classified as truncated to be well classified.

5.4.2 Baseline: Decreasing Factor

Standard process mining tools and libraries such as the plugin ‘Filter Log us-

ing Simple Heuristics’ in ProM18, the software Disco19 or the Python library

PM4Py [14] offer some options to remove truncated traces. Typically, a set of

ending activities is selected by the end-user and the traces that do terminate with

the ending activities are considered truncated and removed. It is also possible to

automatically determine the set of ending activities. Let S be the set of ending

activities that we will use to filter the truncated traces. As a baseline, we use the

method implemented in PM4Py which works as follows: First, the number of

occurrences of each activity as a last activity is counted. Let Ci be the count of the

17Downloaded from https://data.4tu.nl/repository/collection:event_logs_real
18http://www.promtools.org
19https://fluxicon.com/disco/

https://data.4tu.nl/repository/collection:event_logs_real
http://www.promtools.org
https://fluxicon.com/disco/
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Table 5.1 Characteristics of the 13 datasets.

BPI_12 164.5K13.1K 23 96 12.63

BPI_13_CP 6.7K1.5K 7 35 4.51

BPI_13_i 65.5K7.6K 13 123 8.71

BPI_15_1 52.2K1.2K 398 101 43.62

BPI_15_2 44.4K0.8K 410 132 53.31

BPI_15_3 59.7K1.4K 383 124 42.43

BPI_15_4 47.3K1.1K 356 116 44.91

BPI_15_5 59.1K1.2K 389 154 51.15

BPI_17 561.7K31.5K 26 61 17.88

BPI_18 123.3K2.0K 129 680 61.935

Env_permit 38.9K0.9K 381 95 41.62

Helpdesk 13.7K3.8K 9 14 3.61

Dataset #activities#σ
Unique
activities

Max
Length(σ)

Min
Length(σ)

Mean
Length(σ)

BPI_19 1.6M251.7K 42 990 6.31

i th most frequent end activity. We start by adding the most frequent end activity,

C1, to S. Then, we calculate the decreasing factor of the next most frequent activity

using the following formula: Ci /Ci−1. If the decreasing factor is above a defined

threshold we add Ci to S and move to next most frequent activity. If the threshold

is not met, we stop the process. We tried the following thresholds: 0.40, 0.45,

0.50, 0.55, 0.60, 0.65, and 0.70. We report the results obtained using a threshold

of 0.60 as it is the one that yields the best accuracy to detect truncated traces.

Interestingly, it is also the default value in PM4Py.

5.4.3 Evaluation

The first 80% of the traces were used to train the model, and the evaluation was

done on the remaining 20%. Out of the 80% of training data, 20% was used to

validate the parameters. To compare the ground truth with the output of the TTC,

we used the Matthews Correlation Coefficient (MCC) [69]. The MCC has the nice

property of using all the quantities of the confusion matrix, i.e., True Positive

(TP), True Negative (TN), False Positive (FP), and False Negative (FN). Its value lies

between -1 and 1, where 0 represents a random prediction, 1 a perfect score, and

-1 an inverse prediction. It is defined as:

MCC (σ) = T P ·T N −F P ·F Np
(T P +F N )(F P +F N )(T N +F P )(T N +F N )
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Fig. 5.4 aggregates the results per TTC, while Fig. 5.5 contains the detailed re-

sults. In Fig. 5.5, we can see a large MCC score gap per dataset. This gap highlights

the various levels of complexity involved in detecting truncated traces. Also, none

of the techniques always outperforms the others. This is in line with a similar

conclusion that was drawn from large predictive business process monitoring

experiments [34]. Nonetheless, when looking at Fig. 5.4, we observe that the TTC

‘3 FB&LA’ has the highest median MCC score. Interestingly, the performance of

the baseline is comparable to the best implementations for the following five

datasets: BPI_13_CP, BPI_13_i, BPI_18, Env_permit, Helpdesk (see Fig. 5.5). For

the other eight datasets, there is a clear drop in performance between the baseline

and more sophisticated methods. Looking at Table 5.1, we do not see any clear

dataset characteristics to explain the performance gap. We conclude that looking

at the last activity might work well, but for some datasets it is better to use a more

sophisticated TTC.

We also tested the null hypothesis that the results from different TTCs come

from the same distribution. To do this, we ran a permutation test with 100,000

random permutations and a p-value of 0.05. The results are visible in Fig. 5.6. As

can be seen, ‘3 FB&LA’ outperforms the baseline approach with strong statistical

significance. We also observe that transforming a multi-class problem into a

binary classifier–using the ‘4 Soft’ instead of the ‘5 Sig’–does not seem to improve

the ability of the TTC to detect truncated traces, as the MCC scores of Fig. 5.4 are

comparable.

Fig. 5.7 compares the execution time per TTC. The baseline takes in the order

of milliseconds to run. TTCs that are based on XGboost take in the order of

seconds or minutes to run, while approaches that rely on neural networks take

from minutes to hours to run. In fact, the ‘4 Soft’ and ‘5 Sig’ are on average 112

times slower than the other TTCs that rely on XGBoost.

The full benchmark implementations, the parameters, and the event logs, as

well as the results are available online20. The machine used for the experiment

has 61GB of RAM, 4 CPUs, and a GPU that speeds up the neural network training

phase.

5.5 Improving Discovered Process Models with a TTC

A process discovery algorithm discovers a process model from an event log [94].

Because the discovered process model is based on event logs, it offers the advan-

20https://github.com/gaelbernard/truncated-trace-classifier

https://github.com/gaelbernard/truncated-trace-classifier
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Fig. 5.4 Boxplot showing the MCC scores per technique. Each dot depicts an
individual value. The median is written on top.

tage of being a data-driven approach that shows how the process is really executed.

However, discovering a process model from an event log is a challenging task. Typ-

ically, process discovery algorithms are sensitive to noise [84, 29, 93, 18]. Applying

process mining techniques on traces that must supposedly be complete but are

instead truncated is no exception. The quality of a process model is commonly

measured using four competing metrics [93]: (1) The precision measures to what

extent behaviors that were not observed can be replayed on the process model. (2)

The fitness measures to what extent the traces from the event logs can be replayed

on the model. (3) The generalization ensures that the model does not overfit.

Finally, (4) the simplicity measures the complexity involved to read the process

model. When facing truncated traces, a process discovery algorithm will wrongly

infer that the process can be stopped in the middle. This will negatively impact

the precision of the discovered process model. To solve this issue, researchers

advocate removing truncated traces [16, 94, 100]. As highlighted by Conforti et al.,

“[t]he presence of noise tends to lower precision as this noise introduces spurious

connections between event labels” [29].

We ran an experiment to measure the impact of removing truncated traces on

the quality of the process models using PM4Py [14], a process mining library in

Python. We used the default metrics in PM4Py which are described in the follow-

ing papers: precision [72], fitness [94, p. 250], generalization [23], and simplicity

[17]. To start, we randomly generated 100 process models with the PM4py imple-

mentation of PTandLogGenerator [53], using the default parameters21. For each

process model, we produced an event log containing 1,000 traces. We produced

20 variations of each event log with a level of noise ranging from 0 to 1, where 0

means that no traces were truncated and 0.05 means that 5% of the traces were

21Visible at: https://pm4py.fit.fraunhofer.de/documentation#process-tree-generation

https://pm4py.fit.fraunhofer.de/documentation#process-tree-generation
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Fig. 5.5 Detailed MCC score.
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Fig. 5.7 Execution time for the five TTCs. The vertical axis uses a logarithmic scale.

truncated, and so on. Altogether, this process produced 20,000 event logs. For

each of the 20,000 event logs, we ran the following experiment: (1) We applied the

Inductive Miner [60] on the event logs to discover a process model, and (2) then

we replayed the original event log–that did not contain the truncated traces–on

the process model to measure the quality of the discovered process models. This

was the experiment without a TTC. For the experiment with a TTC, we applied

the exact same steps, but, beforehand, we automatically removed the truncated

traces with the TTC ‘3 FB&LA’ described in Section 5.3.

In Fig. 5.8, the results are averaged. As can be seen, the precision and the

generalization metrics are greatly improved, while the simplicity and the fitness

dimensions are negatively impacted. Table 5.9 shows that the average process

quality is improved by 1.7%. Fig. 5.8 shows the link between the ratio of truncated

traces in the event logs and the quality of the resulting process models. The

average process quality visible at the top of Fig. 5.8 shows that when there are

some truncated traces in the event logs, applying the TTC is always beneficial. In

the next section, we show that a TTC can also increase the prediction of the next

events.

5.6 Improving Next Event Prediction with a TTC

The goal of a next event algorithm is to predict the most likely event that will

follow a truncated trace. As shown with the ‘4 Soft’ TTC, we can turn a next event

algorithm into a TTC. Looking at the benchmark in Fig. 5.4, we show that the TTC
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Table 5.2 Comparing the accuracy of predicting the next event and the execution
time, without and with a TTC.

116 116Helpdesk --0.8226 0.8226
3880.2324 - 3730.2325 3.9%Env_permit

0.4755 1.4%BPI_19 87970.4855 86742.1%
0.6277 0.6323 786 2.2%0.7%BPI_18 804

1.0%0.6%0.7642 0.7689 23422318BPI_17
0.0884 663BPI_15_5 1.3% 4.4%6340.0873

0.6% 366BPI_15_4 3830.1385 0.1394 4.4%
0.1364 851 2.5%BPI_15_3 0.1364 873-

0.6%
increase

0.4%
-

3.5%
6.6%

521

628

with ttc

172

347

1066
172

without ttc

324

1060

606

519

0.1584 5.0%BPI_15_2 0.1509
0.0851BPI_15_1 0.0915 7.5%

0.6896
0.5559

with ttc
-
-

increasewithout ttc

0.5559
0.6899

BPI_13_CP
BPI_12
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‘3 FB&LA’ outperforms the TTC ‘4 Soft’. We have the intuition that combining the

best TTC with a next event algorithm will increase the prediction accuracy. The

rationale is that we will more accurately predict the end of the process with a TTC

because it has been trained for this purpose. Hence, we first rely on the TTC to

predict if more events are expected. If not, we do not need to call the next event

algorithm. Overall, we should improve the results as we avoid predicting a next

event when the trace is not truncated. The goal of this section is to validate this

hypothesis.

As it is initially a next event prediction algorithm, we use the TTC ‘4 Soft’ for the

prediction of the next event. In the setting without a TTC, it is the only algorithm

involved. In the version with a TTC, we complement the architecture with the TTC

‘3 FB&LA’ in the following way. First, we assess if the trace is truncated using the

TTC. If the trace is truncated, we predict the next event. Conversely, if the trace is

already complete, we do not need to predict the next event. The results are visible

in Table 5.2. Including a TTC improves the accuracy by up to 7.5% and on average

by 1.4%. In the experiment, building the TTC took an extra 2.4% of duration. We

claim that including a TTC is beneficial for the accuracy while having a limited

negative execution time impact. A TTC solves one problem noted by Tax et al.:

“We found that LSTMs have problems [...] to predict overly long sequences of the

same activity, resulting in predicted suffixes that are much longer than the ground

truth suffixes” [85].
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5.7 Related Work

To the best of our knowledge we are the first to focus on the task of distinguishing

truncated from complete traces. Still, existing works—especially in the area of

predictive process monitoring—are relevant to uncover truncated traces.

Predictive process monitoring anticipates whether a running process instance

will comply with a predicate [35]. For instance, a predicate might be about the

process execution time, the execution of a specific event, or the total amount of

sales. As highlighted by Verenich et al., techniques in this space differ according

to their object of prediction [101]. A TTC is a specific type of predictive process

monitoring task where the predicate is whether we will observe more events.

In [66], Maggi et al. propose a generic predictive process monitoring approach.

Once the predicate is set, the most similar prefixes are selected based on the edit

distance. Finally, a classifier is used to correlate the goal with the data associated

with the process execution. Insights are then provided to the end-user to optimize

the fulfillment of the goal while the process is being executed. It was later extended

with a clustering step to decrease the prediction time [35]. Tax et al. propose a

neural network that leverages LSTM that could serve as another generic predictive

process monitoring algorithm capable of fitting different predicates [85]. In our

work, we use the approach from Tax et al. as a baseline (i.e., TTC ‘4 Soft’). Despite

the advantage of being generic, we show that a tailor-made algorithm to detect a

TTC outperforms such an approach.

The goal of a business process deviance mining algorithm is to assign a binary

class–normal or deviant–to a trace. In this sense, it shares similarities with pre-

dictive process monitoring. This is especially true because of their overlapping

inputs and feature extraction methods [74]. However, deviance mining works on

completed instances and focuses on the why [74].

Finally, Bertoli et al. propose a reasoning-based approach to recover missing

information from event logs [15]. Ultimately, it would allow us to turn a truncated

trace into a complete one. To work, this technique requires a reference process

model as input. Therefore, it is not applicable if the task at hand is to discover a

process model.

5.8 Conclusion

Event logs are often noisy, which makes the application of process mining some-

times difficult in a real setting [18]. Typically, the existence of truncated traces

is known. Still, there is a research gap in systematically detecting them. In this
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chapter, we treat the identification of truncated traces as a predictive process

monitoring task and we benchmark several TTCs using 13 complex event logs. We

show that building a TTC that consistently achieves high accuracy is challenging.

This finding highlights the importance of conducting further research to build

an efficient TTC. Typically, for some event logs, using a baseline approach that

relies solely on the last activity works well. Still, we show that the TTC ‘3 FB&LA’

outperforms such baseline approach with strong statistical significance.

We also measure the process model quality impact when a process discovery

algorithm is run on event logs that contain truncated traces. We show that only a

few truncated traces can greatly decrease the process model quality and that a TTC

can alleviate this problem by automatically removing truncated traces. Finally, we

highlight the unexplored potential of a TTC to increase the accuracy of predicting

the next event. We expect that more benefits of TTCs are yet to be discovered,

especially in the predictive business process monitoring area.

In this chapter, we use the sequence of activities as well as some timing infor-

mation. Using more information such as the name of the resource, the day of the

week or any other event attributes could further improve the accuracy of the TTCs.

Higher accuracy could also be achieved by using different classifiers, trying new

neural network architecture, or implementing alternative feature spaces. This is

an area for future research where our work can serve as a baseline.



Chapter 6

Accurate and Transparent Path

Prediction Using Process Mining

Abstract. Anticipating the next events of an ongoing series of activities

has many compelling applications in various industries. It can be used

to improve customer satisfaction, to enhance operational efficiency,

and to streamline health-care services, to name a few. In this work,

we propose an algorithm that predicts the next events by leveraging

business process models obtained using process mining techniques. Be-

cause we build the predictions from business process models, it allows

business analysts to interpret and alter the predictions. We tested our

approach with more than 30 synthetic datasets as well as 6 real datasets.

The results have superior accuracy compared to using neural networks

while being orders of magnitude faster.

6.1 Introduction

After observing a few events of an incomplete sequence of activities, it is possible

to predict the next events until process completion by learning from historical

event logs, an activity coined path prediction [79]. Anticipating the next events

is valuable in a wide range of scenarios. For instance, when a service desk team

predicts the paths taken by open tickets, the results can be used in many different

ways. One proposition is to cut the number of predicted complaints due to delays

by changing the priority of tickets. Another is to reduce the negative impact on

customer satisfaction by preemptively informing them about a delay. One more is

to align the expertise of service desk agents with the events predicted for a ticket.

The predictions could also be used by inexperienced agents to anticipate the

next events better, allowing them to communicate more accurate information to
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the customers. Overall, predicting paths can help improve worker and customer

satisfaction, as well as improve operational efficiency.

There are two main approaches to making predictions for a series of events.

The first uses process mining while the second relies on neural networks [85].

Both approaches have their strengths and limitations. Process mining is more

transparent because it relies on models that can be inspected by business analysts.

This is important, as business analysts may have knowledge that will influence

their confidence in the prediction which might not be available in the data. Fur-

thermore, “business stakeholders are not data scientists [...] they are more likely to

trust and use these models if they have a high-level understanding of the data that

was used to train these models” [3]. In contrast, reasoning about predictions made

by artificial neural networks is complex, if not impossible. Furthermore, a neural

network requires a long training time [79]. However, in terms of performance,

the most recent research shows that predictions using long short-term memory

(LSTM) in a neural network achieves high accuracy [85].

We address the research gap that exists between accurate, but black-box,

techniques and transparent, but less accurate, process mining techniques. Indeed,

we aim to make predictions that are accurate, fast, and interpretable by business

analysts. We propose a matrix named the loop-aware footprint matrix (LaFM),

which captures the behaviors of event logs when replayed on a business process

model obtained automatically using process mining techniques. The captured

behaviors are then retrieved from LaFM to make predictions about uncompleted

traces. We also propose a clustered version of LaFM (c-LaFM) that can cope with

the inherent complexity of real datasets. We evaluate the prediction accuracy of

LaFM with 30 synthetic datasets and the accuracy of c-LaFM with 6 real datasets.

We show that our technique outperforms the LSTM approach introduced in [85].

The chapter is organized as follows. In Chapter 6.2, we introduce the main

definitions and discuss process mining. Chapter 6.3 provides an overview of

existing works. Chapter 6.4 presents the main idea behind LaFM. In Chapter 6.5,

we present the evaluation procedure. In Chapter 6.6 evaluates and compares the

accuracy of the method using synthetic datasets. In Chapter 6.7, we introduce the

clustered version of LaFM, coined c-LaFM, which is evaluated in Chapter 6.8. We

conclude in Chapter 6.9.

6.2 Preliminaries

In this section, we lay out the main definitions and concepts of our approach.

They are part of the well-established process mining discipline. In this paper, we
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Fig. 6.1 Process tree obtained by the inductive miner with traces: {〈ABDEF〉,
〈BDAEGEF〉, 〈DCEFEG〉, 〈CDEG〉}.

consider only the sequence of events, disregarding the timestamps or any other

contextual information in the data. By doing so, we present a simplified view of

process mining, to be complemented with the foundational book about process

mining [94].

Events. An event is a discrete type of data representing the activities executed

in a process. For instance, ‘transferring a ticket’ is an event in a ticket’s lifecycle.

Let e be an event (equivalent to a ‘touchpoint’ in customer journey term) and E

be the set of all distinct events; i.e., e ∈ E .

Trace. A trace is an instance of a process execution. In a service desk context,

a trace is a ticket (equivalent to a ‘journey’ in customer journey term). Let t =
{e1,e2, ...;e ∈ E } be a trace: a list of events. For instance 〈ABBC〉 is a trace with three

distinct events of length 4 (|t | = 4).

Prefix. Let a prefix pn = {e1,e2, ...,en ;e ∈ t } be the first n events of a trace. Typi-

cally, if t = 〈ABBC〉, then p3 = 〈ABB〉. A prefix represents the few events observed

from an uncompleted trace that we use to make a prediction.

Suffix. A suffix represents the n last events of a trace. Formally, sn = {e|t |−n , ...,

e|t |−1 ,e|t | ;e ∈ t ; e ∉ pn ; |pn |+ |sn | = |t |}, i.e., the suffix is the complement of the

prefix. The suffix is the set of events that we are trying to predict.

Event logs. An event log L = {t1, t2, ...; } is a collection of traces.

By looking only at the event log, process discovery techniques allow us to infer

the business process model that describes well the behavior of the traces. This is

a challenging task because the algorithm should be able to generalize behaviors

even if only a subset of them is observed, to exclude noise and outliers, and to

discover a model that is simple enough that it can be analyzed by a business

analyst but also precise enough to reflect the behaviors of the event logs. Several

techniques and approaches have been proposed to tackle this task. In this work,

we use the inductive miner [60].
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The inductive miner works by finding the best split in an event log and seeing

how the two parts are related. It does this recursively on both parts. The output

is a process tree (Fig. 6.1), which is a representation of a process model that was

introduced in [98]. A process tree uses four operators: (1) the exclusive choice

operator, xor, expresses that only one of the branches is executed; (2) the parallel

operator, and, indicates that all the branches should be executed, in any order; and

(3) a sequence, seq, forces the execution of the branches from left to right. Finally,

(4) a loop has a more complex execution scheme: the first branch is executed at

least once. Then, either we enter the loop by executing the second branch and

the first branch again (which can be done once or multiple times), or we execute

the third branch to exit the loop. As can be seen in Fig. 6.1, except for the leaves,

these four operators fill the whole tree. The leaves of the tree are composed of the

events E as well as silent activities. Silent activities, τ, can be executed like any

other events in the model, but they will not be seen in the traces.

We have now introduced the main terminology, the inductive miner, and the

process tree. Path prediction is concerned with predicting the suffix for a given

prefix by learning from event logs. It differs from process model discovery in

which the goal is to discover a process model from event logs. While the output is

different, both methods are about understanding the control flow of traces. We

leverage this by using the inductive miner as a first step in making predictions.

6.3 Related Work

The area of predictive analytics is wide as trace predictions can be time-related

(e.g., predicting the remaining time), outcome-oriented (e.g., success vs. fail-

ure), or control-flow oriented (e.g., next event(s) prediction). In this work, we

specifically focus on the latter type of prediction.

A widely adopted approach to prediction is to build a Markov chain that de-

scribes the transition probabilities between events. These transition probabilities

are used to make predictions. A prediction depends only on the previously ob-

served event. In the all-K-order Markov model, [78], the number of levels in the

Markov chain is increased, but this increases the execution time. While the accu-

racy of the prediction increases, it suffers from rigidness in terms of the “patterns

that it can learn” [46]. As another approach, Gueniche et al, propose the compact

prediction tree [46]. It uses three data structures that can be used efficiently to

retrieve the most probable event that might occur after having observed a prefix.

While it predicts with high accuracy which events might occur in the suffix, it does
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not return the order in which they will be executed. Hence, compact prediction

trees are not suitable for predicting paths.

There are several process mining approaches for predicting paths. In [57],

Lakshmanan et al. propose a method that estimate the likelihood of the next

activities using a process model and Markov chain. Breuker et al. propose in

[19] a predictive framework that uses grammatical inference and an expectation-

maximization algorithm to estimate the model parameters. Among its predictions,

it can predict the next event. Improving the comprehensibility of the predictions

is one of the design goals of their approach, so that “users without deep technical

knowledge can interpret and understand” [19]. In [79], Polato et al. propose a

labeled transition system and methods for several predictive analytic tasks. Path

prediction can be done by finding a path in the transition system that minimizes

the sum of the weights between the edges.

Recently, neural networks have been studied for predicting the next events. To

the best of our knowledge, Evermann et al. were the first to use a LSTM neural

network approach to predict the next event of an ongoing trace [39]. LSTM, [52], is

a special type of neural network for sequential inputs. It can learn from long-term

dependencies using a sophisticated memory system. The sophisticated memory

system is a double-edged sword: it achieves high accuracy; however, its inherent

complexity makes the inspection of the reasoning behind the predictions difficult.

In [85], Tax et al. generalize the approach of [39]. They evaluate–amongst other

methods–the performance of the algorithm in path prediction and show that it is

more accurate than [19, 39, 79]. Because it achieves the best accuracy, we use it as

a baseline when evaluating the accuracy of LaFM.

Overall, two streams of research dominate path prediction. On one hand,

using process mining techniques, we can make predictions using models that

can be inspected by business analysts. On the other hand, neural networks attain

better performance in terms of accuracy. Our contribution is an algorithm that

utilizes the best aspects of both methods.

6.4 LaFM: Loop-Aware Footprint Matrix

We designed LaFM to store the behavior of traces efficiently when replayed on

business process models. The goal is that the behaviors can be retrieved when

predicting a suffix of events. First, we present the LaFM data structure. Next, we

explain how to build it. Finally, we detail how to use it to make predictions.
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Fig. 6.2 Result of LaFM when the traces 〈ABDEF〉, 〈BDAEGEF〉, 〈DCEFEG〉, and
〈CDEG〉 are replayed on top of the process tree of Fig. 6.1.

6.4.1 LaFM Data Structure

LaFM records the behavior of traces when replayed on top of a business process

model. An illustration of LaFM is shown in Fig. 6.2. Each row corresponds to a

trace and each column describes the behavior of an operator. LaFM captures the

execution orders of parallel branches, the exclusive choices, and the number of

iterations of each loop. We next describe in more detail the information recorded

by LaFM as well as the used terminology.

Parallel branches. LaFM stores the order in which parallel branches are ex-

ecuted. An incremental index is assigned to each outgoing branch of the and
operators and then propagated to the events and silent activities underneath. For

instance, and2 in Fig. 6.1 has two outgoing branches. The index 1 is assigned to

the first branch, which is propagated to the events below, i.e., 1 is assigned to A, B,

and C. Similarly, task D has index 2. The index is recorded in LaFM for each and
operator

Exclusive choices. The decision made for each exclusive choice is recorded in

LaFM. For example, at xor3 in Fig. 6.1, a choice must be made between and4 and

C. For the trace 〈CDEG〉, the choice is C. Hence, C is recorded in LaFM.

Loops. LaFM stores the number of times loops are executed. In Fig. 6.1 for the

trace 〈CDEG〉, the value recorded for loop5 is 1 because it was executed once.

Terminology. An operator might be executed multiple times during a single

process execution. For instance, when the trace 〈BDAEGEF〉 is replayed on the

process tree in Fig. 6.1, we execute the operator xor7 twice because loop5 above

it is also executed twice. The name ‘loop-aware footprint matrix reflects that the

matrix can store all behaviors, regardless of the number of times a loop is executed.

The terminology used for columns in LaFM allows us to retrieve the behaviors

of an operator using a standardized name: operator|loop. Each operator is

assigned a unique name. For example, in Fig. 6.1, loop5 is an operator. For parallel
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gateways, we also append the execution order inside parentheses. For instance,

the second execution of and4 is and4(2). If there are loops, a single operator can

be executed many times, resulting in multiple pieces of information that must be

recorded. Adding the loop position to the terminology allows us to distinguish

this information. Let L be a list of loops that are in the path starting from but

excluding the operator itself to the root of the process tree. L can be empty if an

operator is not contained in a loop. Then, we concatenate ∀l ∈ L the following

strings: lname (li ndex ), i.e., for each loop above an operator, we include its name. In

parentheses, we add the index of the loop. As an example, xor7|loop5{2} points

to the column returning the decisions that are made when the operator xor7 is

executed for the second time.

Three behaviors are captured in the LaFM in Fig. 6.2. Columns 1 to 5 retain

the execution order of parallel gateways; column 6 records the number of times a

loop was taken, and columns 7 to 9 store the decisions made at exclusive choice

gateways.

6.4.2 Training Phase: Building LaFM

To record the decisions made for each operator in the discovered process tree,

we replay the traces we want to learn from a Petri net version of the process tree.

Petri nets can easily be derived from process trees using simple transformation

rules [60]. Petri nets have a strong and executable formalism, which means we

can replay a trace on a Petri net by playing the token game [59]. The token game

takes as input a trace and a Petri net. Then, using a particular set of rules (see

Chapter ‘3.2.2 Petri Nets’ in [94]), the game indicates if the trace fits into the

process model (i.e., the Petri net). Algorithm 2 defines few extra operations that

are performed during the token game to build LaFM. The next section explains

how predictions can be made from LaFM.
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/* Map the parallel operators above the events using a list of tuples (andOperator,

branchIndex). Return an empty list if the event is not included in a parallel operators. */

/* e.g.,: {a: [(and4,0), (and2,0)], b: [(and4,1), (and2,0)], c: [(and2,0)]...} */

1 tsToAnds = getTransitionToAnds(pr ocessTr ee)

/* Map the transitions that occur right after an exclusive gateway. */

/* e.g.,: {and4: Xor3, C: Xor3, F: Xor7, G: Xor7 } */

2 tsToXors = getTransitionToXor(pr ocessTr ee)

/* Map the second branch of loops to tsIncrementLoops and the third one to

tsLeavingLoops */

/* e.g., tsIncrementLoops: {τ4: loop5}; tsLeavingLoops: {τ5: loop5} */

3 tsIncrementLoops = getTransitionToIncrementLoop(pr ocessTr ee)

4 tsLeavingLoops = getTsToLeaveLoop(pr ocessTr ee)

5 laFM = Matrix[]

6 foreach tr ace in log s do

7 counter = initializeCounters()

8 foreach t sF i r ed in tokenGame do

9 manageCounter(t sF i r ed)

10 foreach andOper ator s in t sTo And s[t sF i r ed ] do

11 foreach andOper ator,br anchIndex in andOper ator s do

12 record(tr ace, andOper ator , br anchIndex)

13 if t sF i r ed in t sToX or s then

14 record(tr ace, t sTo And s[t sF i r ed ], t sF i r ed)

15 if t sF i r ed in t sToLeaveLoop then

16 record(tr ace, t sLeavi ng Loops[t sF i r ed ], counter [t sF i r ed ])

17 function manageCounter(t sF i r ed):

18 if t sF i r ed in t sTo And s then

19 foreach andOper ator in t sTo And s[t sF i r ed ] do

20 counter[andOper ator ].increment()

21 if t sF i r ed in t sIncr ementLoops then

22 counter[t sF i r ed ].increment()

23 foreach dependentTr ansi t i on in dependentTr ansi t i ons[t sF i r ed ] do

24 counter[t sF i r ed ].reset()

25 function record(tr ace, tr ansi t i on, val ue):

26 laFM[tr ace][getTerminology(tr ansi t i on)] = value

Algorithm 2: Set of extra operations performed during the token game to

build LaFM.
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Fig. 6.3 Five steps in making prediction using LaFM.

6.4.3 Prediction Phase: Using LaFM

Making predictions using LaFM is a five step recursive process, illustrated in

Fig. 6.3.

Step 1. We play the token game with the prefix to get a list of active tokens.

Step 2. From the tokens, we get the list of active transitions, i.e., the activities

that are currently allowed by the business process model. If only one transition is

active, we skip steps 3 and 4 to fire the transition (step 5). Otherwise, we recursively

eliminate transitions that are less likely (steps 3 and 4).

Step 3. We find the highest (closest to the root) operator in the process tree

common to at least two transitions. For example, in Fig. 6.1, if the active transitions

are A, B, and D, the highest common operator is and2.

Step 4. We make a decision about the operator selected in step 3. Depending

on the operator type, we select the branch to execute next, what decision to make

at an exclusive gateway, or whether to stay in or leave a loop. Fig. 6.4 details how we

retrieve the information in LaFM. In Fig. 6.2, in order to know which one of F and

G is the transition most likely to be chosen the first time we are at xor7, we look at

LaFM for xor7|loop5{1} and observe that F occurs more often (three times out

of four). When a tie occurs, we pick the first one. The number of loops in the prefix

might exceed the number of loops that were observed in the data. Alternatively,

we might have a particular order in the prefix that was never observed in the event

logs. We define three levels of abstraction that we apply consecutively when the

previous abstraction fails. The first level of abstraction is to use LaFM as is. The

second level of abstraction is to drop the loop part of the terminology and stack

the columns for the same operator. For example, if xor7|loop5{3} does not exist

in LaFM, we stack the two columns starting with xor7|. If there is still not enough

information, the third abstraction is to make a decision by looking only at the Petri

net. For parallel and exclusive choice transitions, we pick the first branches with

active transitions. For a loop, the decision is to always to leave the loop. Using

these three abstractions, we can always make a prediction. If the list of potential
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Fig. 6.4 Decisions for each operator type at three level of abstractions.

transitions has been reduced to 1, we go to step 5. Otherwise, we recursively go

back to step 3 where the highest common operator will inevitably be lower.

Step 5. We fire the transition. If it is a task ∈ E , we add it to the suffix. Then, we

check to see if we have reached the end of the Petri net. If yes, we return the suffix.

If not, we go back to step 3.

Having defined how to build and use LaFM, we detail in the next section the

evaluation procedure used to assess the quality of the predictions.

6.5 Evaluation Procedure

The evaluation procedure is the same as that described by Tax et al. in [85]. Two-

thirds of the traces in the event logs are added to the training set. Each trace

in the evaluation is tested from a prefix length of 2 to a prefix length of l − 1,

l being the length of the trace. For instance, the trace 〈ABCD〉 is decomposed

into: prefix:〈AB〉, suffix:〈CD〉 and prefix:〈ABC〉, suffix:〈D〉. The extracted prefix is

added to the evaluation set and the suffix is added to the ground truth set. After

learning from the training set, we use the evaluation set to make predictions about

the prefix. The accuracy is obtained by measuring the Damerau-Levenshtein

similarity between the predicted suffix and the ground truth set. The Damerau-

Levenshtein distance, [32], is an edit-distance-based metric that minimizes the

number of substitutions, deletions, or additions that are needed to align two

sequences. In contrast with the Levenshtein distance, the Damerau-Levenshtein

distance allows us to swap two adjacent activities. Let e be the evaluation set, pi

the ith predicted suffix, and ti the ith ground truth suffix. We evaluate a whole

evaluation set using the following formula:
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Damer auSi mi l ar i t y(e) = 1−
∑|e|

i=1
Damer auDi st ance(pi ,ti )

max(leng th(pi ),leng th(ti ))

|e| (6.1)

A Damerau similarity of 1 means that the predicted suffix is identical to the

ground truth. We use the evaluation procedure in the next section to evaluate the

performance of LaFM on synthetic datasets as well as in Chapter 6.8 where the

performance of c-LaFM is tested on real datasets.

All evaluations were processed on a Mac Pro with the following configuration:

3.5 GHz 6-Core Intel Xeon E5, 64 GB 1866 MHz DDR3. We slightly updated LSTM22

so that it does not predict the time remaining. We confirmed that this change

does not impact the accuracy of the next event predictions and slightly reduces

the execution time. LaFM and c-LaFM, as used in the evaluations, are available at:

http://customer-journey.unil.ch/lafm.

6.6 LaFM: Evaluation

To evaluate LaFM, we used a collection of 30 synthetic datasets23 that were cre-

ated from process trees of varying shapes and complexities. These datasets were

initially created and used in [59] for testing process discovery and conformance

checking techniques.

There are three rounds of evaluation. In each round, 10 process trees were

generated. The complexity of the process trees as well as the number of traces

generated increase with the round. Overall, 64 traces were generated in round 3,

256 traces in round 4, and 1025 in round 5. We compared the predictions obtained

using LaFM, Markov chains, and LSTM. We ran the evaluation five times. The

arithmetic means of these five runs is shown in Fig. 6.5. LaFM is deterministic,

therefore, its variance is null. The predictions made using LaFM are closest to the

ground truth (21 times), followed by LSTM (8 times), and Markov chains (4 times).

There are important differences in the execution times of the three techniques

(see Fig. 6.6). Because its predictions rely only on the previous observed event, it is

not surprising that the fastest predictions are made using Markov chains, followed

by LaFM. To put the duration into perspective, the average execution time per

dataset is approximately 111 times slower for LaFM compared to a Markov chain,

and 6140 times slower for LSTM compared to a Markov chain.

22available here: https://verenich.github.io/ProcessSequencePrediction/. Last visited: 13th of
March 2020

23 https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05, sets ‘1 - scala-
bility’, ‘round 3 to 5’. Last visited: 13th of March 2020

http://customer-journey.unil.ch/lafm
https://verenich.github.io/ProcessSequencePrediction/
https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05
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6.7 c-LaFM: Clustered Loop-Aware Footprint Matrix

The accuracy of the predictions made using LaFM is dependent on the quality

of the discovered process tree. While the previous section showed that LaFM

performs well with synthetic datasets generated from well-structured process

trees, the accuracy will drop with real datasets, which often have very complex

behaviors and noise that cannot be described well using a single model. Our

intuition is that we should group similar traces using clustering techniques and,

for each group, discover a process tree that well describes a subset of similar traces.

Hence, we propose an updated version of LaFM with a clustering step, named

c-LaFM for clustered LaFM.

We propose a four-step clustering method, as shown in Fig. 6.7. In step 1,

we extract the features that will be used to group similar traces. Thus, we count

the number of ngrams ranging in size from 1 to 2. For instance, the trace 〈ABA〉
becomes: {A:2, B:1, AB:1, BA:1}. Then, we cluster the traces using HDBSCAN,24

which has the advantage of having only one intelligible parameter to set, the

minimum number of traces per cluster. According to our experiment, from 2 to 10

traces per cluster yields the best results. However, it is difficult to anticipate the

best minimum cluster size. Hence, we perform a hyperparameter optimization of

a type grid search by using 10% of the training data set to evaluate the accuracy

of the minimum cluster size and retain the best-performing one. Instead of

attributing each trace to a single cluster, we rely on a soft clustering approach,

which returns, for each trace, the probability of it belonging to all the clusters.

Fig. 6.8 illustrates the soft clustering approach. Each point represents a trace.

The closer two traces are, the more ngrams they share. The strong representatives

are used to discover the process tree, while the weak and the strong representatives

24https://github.com/scikit-learn-contrib/hdbscan. Last visited: 13th of March 2020

https://github.com/scikit-learn-contrib/hdbscan
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Cluster 2
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Fig. 6.8 Illustration of the soft clustering concept.

will be replayed over the process tree and are available in LaFM. The strong

representatives are the traces that have a probability higher than 80% of belonging

to a cluster and the weak representatives have a probability higher than 20% but

less than 80%. Using a soft clustering approach has two main advantages. First,

the inductive miner is sensitive to noise. Hence, we want to learn only from the

strong representatives (i.e., with a high probability of belonging to the clusters)

with the aim of capturing only the main behaviors. Second, although we do not

use them to build the process trees, borderline traces might contain interesting

behaviors for several clusters. By using a soft clustering approach, we can assign

these single traces to several clusters.

In step 2, the strong representatives are used to build the process tree. Then,

the process tree is transformed to a Petri net so that the weak representatives can

be replayed on it to build a local LaFM, a mechanism that is described in Chapter

6.4.2.

In step 3, we train a stochastic gradient descent classifier25 to predict which

cluster a prefix belongs to. Although the clustering is done only once for the entire

complete traces, we build one classifier for each prefix length. If an unexpected

prefix length comes from a never-seen-before instance, we select the classifier

that was built with the largest prefix length.

In step 4, we predict the suffix of a given prefix using the cluster returned by

the classifier. Altogether, these four steps allow us to make predictions in the

presence of noise and outliers, which are often found in real datasets. This is what

we evaluate in the next section.
25 http://scikit-learn.org/stable/modules/sgd.html. Last visited: 13th of March 2020

http://scikit-learn.org/stable/modules/sgd.html
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Table 6.1 Datasets used for the evaluation.

Name (doi) Description #traces #events #unique
events

1 helpdesk (10.17632/39bp3vv62t.1) Events from a ticketing system 3’804 13’710 9

2 bpi12 (10.4121/uuid:3926db30-f712-
4394-aebc-75976070e91f)

Loan process for a financial industry. Note:
keeping only manual task and lifecycle:
complete as described in [85]

9’658 72’413 23

3 bpi13 closeP (10.4121/c2c3b154-
ab26-4b31-a0e8-8f2350ddac11)

Closed problem - management system from
Volvo IT Belgium

6’660 1’487 7

4 bpi13 incidents (10.4121/3537c19d-
6c64-4b1d-815d-915ab0e479da)

Incidents - management system from Volvo
IT Belgium

7’554 65’533 13

5 bpi13 openP (10.4121/500573e6-accc-
4b0c-9576-aa5468b10cee)

Open problems - management system from
Volvo IT Belgium

819 2’351 5

6 envPermit (10.4121/uuid:26aba40d-
8b2d-435b-b5af-6d4bfbd7a270)

Execution of a building permit application
process. Note: we pick the Municipality 1

937 38’944 381
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Fig. 6.9 Comparing c-LaFM to LSTM using real datasets. Each datasets was evalu-
ated 10 times.

6.8 c-LaFM: Evaluation

To test our approach, we used six publicly available event logs, as described in

Table. 6.1. Because the event logs reflect activities performed in real life, making

predictions is a complex task. Typically, for the event logs describing the execution

of a building permit application (envPermit), “almost every case follows a unique

path” [85].

In contrast to LaFM, c-LaFM is non-deterministic due to the clustering step.

Hence, we ran the experiment 10 times with c-LaFM and LSTM using the pro-

cedure described in Chapter 6.5. Fig. 6.9 compares the accuracy of LSTM and

c-LaFM. c-LaFM is more accurate for five datasets out of six. We compare the

execution times in Fig. 6.10. On average, c-LaFM is 9 times faster than LSTM.

Overall, we have shown that the clustered version of LaFM is accurate and fast.
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Fig. 6.11 shows one of the predictions for the execution of a building permit

using a business process model, which was derived from the process tree that

was used to make the prediction. This is an illustration of how we can provide,

not only the predictions itself, but a way to express the reasoning behind the

prediction. For instance, a business worker could–after investigating traces like

those used to make the prediction–decide not to trust the prediction because they

have knowledge about the context that is not available in the event logs.

6.9 Conclusion

We propose an algorithm that relies on process models to make future path predic-

tion. More specifically, we propose a matrix coined LaFM that retrieves the most

likely next events. We also propose c-LaFM, a version which is more suited to deal

with the inherent complexity of real datasets. The algorithm shows promising

results in terms of accuracy and execution time.

The results showcase the value of the process models discovered using a pro-

cess discovery algorithm. Indeed, not only are these business models intrinsically

interesting for business process analysts, but we also show that they can be used to

make predictions. A limitation of this work is that we choose to rely on the induc-

tive miner. In our future work, we plan to measure how the use of different process

discovery techniques may impact the accuracy of the predictions. We anticipate

that mining hidden rules between LaFM columns will yield interesting results,

especially if we consider extending LaFM with contextual information. This would

allow us to detect long-term dependencies that could be used to improve the

accuracy further.

Business analysts can be reluctant to trust predictions they do not understand

[19]. Because in our work the predictions are made with business process models,

the predictions can be manually inspected by business analysts. Currently, our

algorithm returns only the predictions, limiting the explainability of the results.

However, we envision a framework that includes an advanced visualization system

that explains how the predictions are made and allows business analysts to alter

the predictions if they have knowledge that is not in the data. This type of system

would display the process model, the traces on which the predictions were made,

and the reasoning behind the predictions. Gartner has urged us to move toward

explainable artificial intelligence that gives visibility to business stakeholders “by

leveraging historical data, explaining model inputs, simplifying results or exposing

underlying data in human understandable ways” [3]. Our work contributes by

providing the foundation on which a fully comprehensible prediction system
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can be built. Interestingly, in the same report, [3], Gartner states that there is

a trade-off between explainability and accuracy. Our results highlight that this

trade-off does not necessarily hold here as we can provide results that are both

transparent and more accurate than state-of-the-art neural network approaches.



Chapter 7

Conclusion

We conclude this dissertation in three parts. First, we highlight how our contribu-

tions link back to the two research questions. Second, we position our contribu-

tions with related works. Third, we conclude by providing an outlook.

7.1 Contributions

This dissertation contributes in the following ways. To start, we bring process

mining and customer journeys closer together in Chapter 1, by showing that the

process mining framework and the related XES standard are relevant to customer

journeys. As such, this chapter can be seen as a foundational pillar supporting the

contributions that follow.

In Chapter 2, we propose a genetic approach to discovering customer journey

maps, similar to process discovery techniques that can discover process models

from event logs. In Chapter 3, we propose a novel way of navigating customer

journey maps hierarchically, with the option of adding a goal (e.g., journeys that

concern people above 40 years old). Next, Chapter 4 contributes by showing how

a process tree produced by the inductive miner can help to semi-automatically

abstract related activities (e.g., “paying by card” and “paying by cash” become

“paying”). Together, Chapters 2 to 4 answer the first research question posed in

the introduction: How can customer journey maps be discovered, explored, and

enhanced from event logs? A short answer is that the XES standard from process

mining can be used as-is: existing process mining algorithms can be leveraged to

enhance CJM (e.g., the inductive miner can abstract CJM), while the peculiarities

of a CJM visualization call for specific customer journey discovery algorithms to

replace the process discovery ones.
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The last part of the dissertation, Chapters 5 and 6, address the second research

question: How can the touchpoints of a customer journey be predicted? In Chap-

ter 5, we propose an autonomous truncated trace classifier that can predict, given

a prefix of events, whether more events are expected (i.e., truncated) or not (i.e.,

complete). Finally, in Chapter 6, we propose an algorithm that takes as input a

prefix of events and returns the most likely sequence of events that will follow until

the trace is complete. In contrast to Chapters 2 to 4, which relate specifically to

customer journeys, Chapters 5 and 6 are more generic; indeed, their contributions

can be used as-is by the process mining community. However, they fit this disser-

tation well because they address prediction techniques that are especially needed

for customer journeys. In fact, events that belong to customers (e.g., “buying a

product”) cannot be controlled from a company perspective. Hence, we anticipate

that the level of uncertainty will be higher and that predicting whether a journey

will be completed or how it will be completed are challenging but insightful tasks.

The answer to the second research question is that existing next events prediction

algorithms from process mining can also be used to predict the next touchpoints

of a customer journey.

7.2 Limitations

The tools CJM-explorer and CJM-abstractor, presented in Chapters 3 and 4, are

submitted as demos. As such, they are not as strongly evaluated as the tools

presented in other chapters.

One way to strengthen these chapters would be to study the use of these tools

by practitioners in several industries and to build a taxonomy of insights that can

be extracted from them. Exposing the tools to practitioners might highlight some

drawbacks, missing features, or misunderstandings that can be improved. Design

science approaches could be the perfect candidate to carry such iterative work

(e.g., [51]). This would be an ambitious project that would require several case

studies within multiple companies. However, it would validate the type of insight

that can be extracted from such tools and close the gaps between practitioners

and academics.

Another approach could be to make the tools available for the industry and to

collect feedback using surveys. The goal would be to validate some hypothesis,

e.g., ‘using a customer journey analysis approach I get a new perspective compare

to a business process analysis approach’. Again, designing a relevant survey and

making the tool available for several companies are challenging tasks but with a

high potential to close the gaps between academy and industry.



7.3 Positioning 87

7.3 Positioning

Several studies by Hassani et al. leverage the mapping we propose in [6] to extend

the link between process mining and customer journey analysis. First, Terragni

and Hassani [86, 87] propose a recommender system for customer journeys. Their

research shows an interesting interplay between process mining, which is used

to define key performance indicators and customer journeys, which are used as

implicit recommendation feedbacks. Second, in [45], Goossens et al. propose

an alternative recommender system that takes into account the order of the

touchpoints. Third, Nooyen [75] focuses on the task of predicting a customer

complaint in a customer journey. This is made possible by using process mining

to measure the similarities among journeys. These works further highlight the

potential of brining customer journeys and process mining closer together.

Some authors propose domain-specific graphical representations of customer

journeys. In [4], Berendes et al. propose a customer journey modeling language

for which they have coined the name High Street Journey Modeling Language

(HSJML). Because it is retail-specific, its notation imposes a list of predetermined

phrases (e.g., “pre-purchase,” “post-purchase”) and touchpoints (e.g., “customer

has published a review”). Ultimately, this standardization allows for adequate

comparison of journeys from multiple stores. In [91], van den Bos proposes an

extension to Archimate, an enterprise architecture modeling language. The aim

of the extension is to create user journeys that ensure alignment between user

experience designers and enterprise architects.

In this dissertation, we choose to stick to the main components of the customer

journey to stay domain-agnostics. However, this does not prevent someone else

from extending the mapping we proposed in the introduction (Fig. 1.1, page 11)

to meet the specific needs of a particular industry. Our work differs from other

approaches for the reasons that follow. First, the link between process mining

and customer journeys was not existing before the publication of our related

paper, [6]. The subsequent papers that follow, [45, 75, 86, 87], nicely illustrate

the generalizable nature of this contribution. Second, our contributions [5, 7, 10]

differ from existing works because, to the best of our knowledge, we show how

to automatically build and transform CJMs using event logs. Existing works (e.g.,

[4, 91]) that deals with CJMs are working with expected CJMs, they are not inferred

from the data.
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7.4 Outlook

In Chapter 1, we present the ten process mining activities from the process mining

framework. We repeat them here, as they will serve as an outlook for future work:

(1) explore, (2) predict, (3) recommend, (4) detect, (5) check, (6) compare, (7)

promote, (8) discover, (9) enhance, and (10) diagnose. In this dissertation, we

propose techniques related to the following activities: discover (Chapters 1 and 2),

enhance (Chapter 4), explore (Chapter 3), and predict (Chapters 5 and 6). Other

researchers have shown the relevance of the activity “recommend” for process

mining [86, 87, 45], while Nooyen proposes a solution to predict customers’ com-

plaints [75]. Clearly, there are more spaces for further research that investigates

the relevance of process mining activities for customer journey analytics.

Coming back to the BPM lifecycle introduced in Fig. 1.3 (page 7), we claim

that we contribute to the discovery and analysis of the customer process, i.e.,

the customer journey. According to the lifecycle, the insights extracted from

these steps should be used as input to redesign the customer journey; this could

be done using an expected CJM. We believe that the most interesting premise

for future work is contributions that will allow closing of the BPM lifecycle, i.e.,

linking expected CJMs back to actual CJMs. To achieve this, one has to answer the

following question: How can we best implement and monitor customer journeys?

One idea to explore would be a framework for running marketing campaigns on

top of expected customer journeys. Another idea, which is similar to conformance

analysis in process mining, would be to check discrepancies between expected

and actual customer journeys; feedback could be collected from customers who

have experienced unexpected journeys.

One of the key challenges of customer journeys is that they exist from cus-

tomers’ perspectives and are outside the control of companies. For instance, some

touchpoints along the journey could happen on external systems (e.g., social

media) or even offline (e.g., interaction in a store). Collecting such interactions

is still an open challenge that needs to be resolved to capture the full customer

journey. Being able to extract events logs from sparse information systems is a

well-recognized dilemma within the process mining community [94]. Because

CJMs are intrinsically linked with context data, such as customers’ emotions, an

even higher level of complexity is expected. However, we argue that CJMs built

from event logs can also be used to complement existing CJMs built “by hand”.

For instance, the former can be used to validate the activities’ ordering of the latter.

In other words, we can at least confront the sequence of activities expected with

the reality captured in the logs. Some activities may not be recorded at all (e.g.,
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visiting concurrent websites). Superposing both models should help pinpoint

which activities are not available in the logs.

Clearly, there are more spaces for further research that investigates the rele-

vance of process mining activities for customer journey analytics. For instance,

Nooyen propose the customer journey specific activity of predicting a customer

complaint [75]. Are there any other activities that are relevant for customer jour-

neys that do not exist in the process mining framework? Similar to the discover of

representative journeys (Chapters 2 and 3), we believe that it would be interest-

ing to discover representative customers. In other words, are there some groups

of customers that behave in similar way which could be explained using demo-

graphic information? In the dissertation, we put a large emphasis on the behaviors

of customers. However, in a customer journey analytics context, demographic

information is also very important. Another area for further research might consist

of offering a way to translate an expected journey into demographic information

and the other way around. Simply put: “give me a typical journey and I would

tell you, by analyzing the event logs, what is the most likely characteristic of the

customer”, or “give me some customer information I will return the most likely

customer journey”. We believe that such ‘fact-checking’ tool would greatly help

during workshops.

To conclude, tools such as the BPM lifecycle and the process mining frame-

work from the process mining and BPM fields are highly relevant when analyzing

customer journeys. However, as shown in this dissertation, the switches in per-

spective, the new types of visualization, and the fact that customers cannot be

controlled impose new challenges that need to be tackled.





References

[1] Andrews, J. and Eade, E. (2013). Listening to students: Customer journey
mapping at birmingham city university library and learning resources. New
Review of Academic Librarianship, 19(2):161–177.

[2] Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F. M., Marrella, A.,
Mecella, M., and Soo, A. (2017). Automated discovery of process models from
event logs: Review and benchmark. IEEE Transactions on Knowledge and Data
Engineering, 31(4):686–705.

[3] Baker, V., Clark, W., and Alaybeyi, S. (2018). Build trust with business users
by moving toward explainable ai. Technical report, Gartner. https://www.
gartner.com/doc/3891245/build-trust-business-users-moving (Last visited:
3rd of June 2020).

[4] Berendes, C. I., Bartelheimer, C., Betzing, J. H., and Beverungen, D. (2018).
Data-driven customer journey mapping in local high streets: A domain-specific
modeling language. In 39th International Conference on Information Systems
(ICIS, Research-in-Progress).

[5] Bernard, G. and Andritsos, P. (2017a). Cjm-ex: Goal-oriented exploration of
customer journey maps using event logs and data analytics. In BPM Demo Track
and BPM Dissertation Award co-located with 15th International Conference on
Business Process Management (BPM Demo).

[6] Bernard, G. and Andritsos, P. (2017b). A process mining based model for
customer journey mapping. In Forum and Doctoral Consortium Papers Pre-
sented at the 29th International Conference on Advanced Information Systems
Engineering (CAiSE Forum), pages 49–56. CEUR workshop proceedings.

[7] Bernard, G. and Andritsos, P. (2018). Cjm-ab: Abstracting customer journey
maps using process mining. In Forum and Doctoral Consortium Papers Pre-
sented at the 30th International Conference on Advanced Information Systems
Engineering (CAiSE Forum), pages 49–56, Cham. Springer.

[8] Bernard, G. and Andritsos, P. (2019a). Accurate and transparent path pre-
diction using process mining. In 23rd European Conference on Advances in
Databases and Information Systems (ADBIS), pages 235–250, Cham. Springer.

[9] Bernard, G. and Andritsos, P. (2019b). Contextual and behavioral customer
journey discovery using a genetic approach. In 23rd European Conference on
Advances in Databases and Information Systems (ADBIS), pages 251–266, Cham.
Springer.

https://www.gartner.com/doc/3891245/build-trust-business-users-moving
https://www.gartner.com/doc/3891245/build-trust-business-users-moving


92 References

[10] Bernard, G. and Andritsos, P. (2019c). Discovering customer journeys from
evidence: A genetic approach inspired by process mining. In Forum and
Doctoral Consortium Papers Presented at the 31st International Conference
on Advanced Information Systems Engineering (CAiSE Forum), pages 36–47,
Cham. Springer.

[11] Bernard, G. and Andritsos, P. (2020). Truncated trace classifier. removal of
incomplete traces from event logs. In 21st International Working Conference on
Business Process Modeling, Development, and Support (BPMDS), pages 150–165,
Cham. Springer.

[12] Bernard, G., Boillat, T., Legner, C., and Andritsos, P. (2016). When sales
meet process mining: A scientific approach to sales process and performance
management. In 37th International Conference on Information Systems (ICIS,
Research-in-Progress).

[13] Berre, A. J., Lew, Y., Elvesæter, B., and de Man, H. (2013). Service innovation
and service realisation with vdml and serviceml. In IEEE 17th International
Enterprise Distributed Object Computing Conference Workshops (EDOC), pages
104–113. IEEE.

[14] Berti, A., van Zelst, S. J., and van der Aalst, W. M. (2019). Process mining
for python (pm4py): Bridging the gap between process-and data science. In
ICPM Demo Track 2019 co-located with 1st International Conference on Process
Mining (ICPM), pages 13–16. CEUR workshop proceedings.

[15] Bertoli, P., Di Francescomarino, C., Dragoni, M., and Ghidini, C. (2013).
Reasoning-based techniques for dealing with incomplete business process
execution traces. In 13th International Conference of the Italian Association for
Artificial Intelligence (AI*IA), pages 469–480, Cham. Springer.

[16] Bezerra, F., Wainer, J., and van der Aalst, W. M. (2009). Anomaly detection
using process mining. In Enterprise, Business-Process and Information Systems
Modeling, pages 149–161, Berlin, Heidelberg. Springer.

[17] Blum, F. R. (2015). Metrics in process discovery. Technical report, Universidad
de Chile. https://www.dcc.uchile.cl/TR/2015/TR_DCC-20151221-007.pdf (Last
visited: 5th of June 2020).

[18] Bose, R. J. C., Mans, R. S., and van der Aalst, W. M. (2013). Wanna improve
process mining results? In IEEE Symposium on Computational Intelligence and
Data Mining (CIDM), pages 127–134. IEEE.

[19] Breuker, D., Matzner, M., Delfmann, P., and Becker, J. (2016). Comprehensible
predictive models for business processes. MIS Q., 40(4):1009–1034.

[20] Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G. (1997). Syntactic
clustering of the web. Computer Networks and ISDN Systems, 29:1157–1166.

[21] Brynjolfsson, E., Hu, Y. J., and Rahman, M. S. (2013). Competing in the age of
omnichannel retailing. MIT Sloan Management Review, 54(4):23.

https://www.dcc.uchile.cl/TR/2015/TR_DCC-20151221-007.pdf


References 93

[22] Buijs, J. C., van Dongen, B. F., and van der Aalst, W. M. (2012). A genetic
algorithm for discovering process trees. In IEEE Congress on Evolutionary
Computation (CEC), pages 1–8.

[23] Buijs, J. C., van Dongen, B. F., and van der Aalst, W. M. (2014). Quality dimen-
sions in process discovery: the importance of fitness, precision, generalization
and simplicity. International Journal of Cooperative Information Systems, 23(1).
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