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Abstract. We consider truncated traces, which are incomplete sequences
of events. This typically happens when dealing with streaming data or
when the event log extraction process cuts the end of the trace. The
existence of truncated traces in event logs and their negative impacts
on process mining outcomes have been widely acknowledged in the lit-
erature. Still, there is a lack of research on algorithms to detect them.
We propose the Truncated Trace Classifier (TTC), an algorithm that
distinguishes truncated traces from the ones that are not truncated. We
benchmark 5 TTC implementations that use either LSTM or XGBOOST
on 13 real-life event logs. Accurate TTCs have great potential. In fact,
filtering truncated traces before applying a process discovery algorithm
greatly improves the precision of the discovered process models, by 9.1%.
Moreover, we show that TTCs increase the accuracy of a next event pre-
diction algorithm by up to 7.5%.

Keywords: process mining, predictive process monitoring, predictive
analytics, truncated trace classifier

1 Introduction

The execution of a business process often leaves trails in information systems
called event logs. Using these event logs, process mining techniques can extract
data-driven insights about business processes. For example, it is possible to dis-
cover process models from event logs [1], to predict the next event [2, 3], or to
assess whether an ongoing process will fulfill a time constraint [4].

A truncated trace is a trace where the last events are missing. In fact, these
events happened or will happen, but they are not available at the time of the
analysis. The presence of truncated traces in event logs is acknowledged by
researchers [5–8]. Interestingly, organizers of the latest edition of the Process
Discovery Contest [9]–a contest where participants have to infer process models
from event logs–have included truncated traces to make the synthetic event logs
more realistic.

We propose a Truncated Trace Classifier (TTC) that distinguishes truncated
traces from the ones that are not truncated. We refer to the latter as the ‘com-
plete trace’. We foresee three benefits of using a TTC. First, a TTC can filter
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truncated traces. This is important because the success of process mining de-
pends on the quality of the input event logs [10–13]. Second, a TTC helps to
increase operational efficiency. For instance, a ticket in a call center might stay
open for several days because an agent forgot to close it or because the customer
did not follow up on a requested action. Using a TTC, we could avoid the man-
ual task of closing them by doing it in an automated manner. Third, a TTC has
potential that goes beyond filtering techniques. For instance, we show in this
work that a TTC can improve the accuracy of predicting the next event.

It is not uncommon to read that truncated traces can be filtered out by
looking at the very last event [5–8]. For example, a ticket is complete only when
the activity ‘closing the ticket’ happens. However, such a closing event might not
exist. Instead, a recurring one might occur [14]. For instance, the event ‘delivering
package’ might be a good indicator to predict that an order is fulfilled, but it
might reoccur if some items are being shipped separately. In such a case, relying
on the very last event will result in a poorly performing TTC. This observation
is in line with the conclusion drawn by Conforti et al. that existing techniques
to filter traces are often simplistic [11].

To the best of our knowledge, we are the first work focusing on building an
accurate TTC. Our contributions are the following: (1) We propose five machine
learning-based TTC implementations. (2) We benchmark these five implemen-
tations and a baseline approach using 13 event logs. (3) We highlight the benefit
of using a TTC for two process mining tasks, that of process discovery and next
event prediction.

The rest of this paper is organized as follows. In Section 2, we provide an
overview of process mining and define truncated traces. In Section 3, we propose
several approaches to building a TTC, which we benchmark in Section 4. Sections
5 and 6 demonstrate the value of a TTC by showing how it can increase the
process model precision and next event prediction, respectively. In Section 7, we
discuss related work and we conclude the paper in Section 8.

2 Preliminaries

In this section, we briefly introduce the process mining discipline. Then, we
define truncated traces.

2.1 Process Mining

Process mining brings data science and business process management closer
together [6]. As stated in the process mining manifesto, the starting point of
process mining is an event log [12]. An event log contains traces, which are
sequences of events. Event logs often contain additional information such as a
timestamp or the resource. We will use the simple event log definition introduced
in [6]. A simple trace σ is a sequence of events. A simple event log L is a multi-set
of traces. For example, L = [〈abc〉3, 〈ab〉2] is an event log containing 5 traces and
13 events. Taking an event log as input, several process mining techniques are
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available. Typically, a process discovery algorithm such as the inductive miner,
[15], can infer the most likely business process model behind an event log. To
ensure that process mining works well, event logs need to be noise-free [10–12].
Truncation is one type of noise [16], which we introduce in the next section.

2.2 Truncated Traces

A truncated trace is an ongoing trace where the end of the process is missing.
Truncated traces are sometimes referred to as ‘incomplete cases’ [7, 8], ‘incom-
plete traces’ [5], or ‘missing heads’ [10]. We favor the term truncated over the
term incomplete as the latter is often used for the concept of ‘event log incom-
pleteness’, referring to the fact that an event log will most likely not contain all
the combinations of behaviors that are possible because there are too many of
them [12]. For instance, when there is a loop in the process model, the number of
unique combinations is infinite. Event logs will most likely be incomplete while
they may not contain truncated traces.

There are several reasons to explain the existence of incomplete traces. They
might exist because of a flawed event log extraction process that cuts the traces
at a fixed date, leaving the traces that finish after truncated. This issue–named
‘the snapshots challenge’–has been identified by van der Aalst as one of the five
challenges that occurs when extracting event logs [6, chapter 5.3]. This type
of truncated trace could be avoided by extracting only the traces where no
event happens after the extraction date. However, once the data is extracted, we
cannot know which traces are truncated. As another example, incomplete traces
can exist because the events have not happened yet. This is especially relevant
when working with streaming data. Finally, truncated traces can result from a
wrong execution (e.g., the ticket was supposed to be closed but the agent forgot
to do it) or when the information system fails. In the next section, we introduce
a classifier to automatically detect truncated traces.

3 Truncated Trace Classifier

A TTC inputs the current execution of a trace and predicts whether it is trun-
cated. As shown in Table 1, we generate one input sample and one target for
each prefix length of each trace. The input sample represents the current state
of the process on which we apply a TTC. The target is a binary label that is
‘true’ when the trace is truncated or ‘false’ otherwise.

This setting implies that ‘real’ truncated traces that we would like to iden-
tify as such using the TTC would be labeled as complete. However, our intuition
is that the model will also learn from similar complete traces where the trun-
cated parts will be labeled as ‘truncated’. For illustration purposes, let us define
the following event logs: 〈abc3, ab〉. During the training phase, the sequence ab
appears three times as ‘truncated’ and once as ‘complete’. Hence, during the
prediction phase, the sequence ab would most likely be predicted as ‘truncated’.
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Fig. 1. The traces 〈abc〉 and 〈acadd〉 result in eight samples.

To build a classifier, we need to map the input sample to a feature space.
There are several options to do so, covered in depth in [8, 17–19]. We provide
non-exhaustive examples that are illustrated in Fig. 2.
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Fig. 2. Illustration of the feature spaces for the input samples 〈aca〉 and 〈acad〉.

Last Event. Relying only on the last event to predict that a trace is trun-
cated is one option often mentioned in the literature [5–8]. For example, the
input for sample #3 from Fig. 1 would be ‘c’.

Frequency. The ‘frequency’ feature space counts the occurrences of each
event. As shown in Fig. 2, 〈aca〉 becomes {a:2,b:0,c:1,d:0}. This feature space
does not record the order in which the events appear.

Sequence Tensor. A sequence tensor contains an extra ‘timestep’ dimen-
sion. Each timestep is a matrix similar to the ‘last event’; i.e., it describes which
event happens. The extra dimension allows to describe the full sequence of
timesteps in a lossless way. The number of timesteps is equal to the longest
sequence in the event logs.

Once the input samples have been mapped into a feature space, it can be fed
together with the target to a classifier. We propose five TTC implementations
depicted in Fig. 3. As can be seen in Fig. 3, We also add a few base features: (1)
the number of activities in the prefix, (2) the number of seconds since the first
event in the trace, and (3) the number of seconds since the previous event in
the trace. Such extra features were also added in the predictive business process
monitoring proposed by Tax et al. [3]. The five TTCs are described below.
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Fig. 3. Five implemented TTCs.

1 LA (Last Activity). This TTC relies on the last activity to predict that
the trace is truncated.

2 FB (Frequency Based). This TTC uses the ‘frequency’ feature space de-
scribed in Section 3.

3 FB&LA. This TTC concatenates the TTCs ‘1 LA’ and ‘2 FB’ because
they both convey complementary information.

4 Soft (Softmax). This TTC corresponds to a next event prediction algo-
rithm. In fact, the implementation is similar to the predictive business process
monitoring from Tax et al. [3]. Predicting which event will occur is a multi-class
prediction problem. Thus, we rely on the Softmax function because it transforms
the output to a probability distribution. The end of the process is treated as any
other event. If the latter is predicted as the most likely next event, we predict
that the trace is complete. If not, we predict that the trace is truncated.

5 Sig (Sigmoid). The TTC ‘5 Sig’ turns the multi-class problem into a binary
one by using a one-vs-all strategy with the special ‘end’ event. We implemented
both TTCs to compare the accuracy when the neural network is specially trained
to recognize truncated traces (‘5 Sig’) or when the task is to predict the next
event (‘4 Soft’).

TTCs 1 to 3 use XGBoost3 [20], which stands for eXtreme Gradient Boosting.
It relies on an ensemble of decision trees to predict the target. This technique
is widely used among the winning solutions in machine learning challenges [20].
For the main settings, we set the number of trees to 200 and the maximum depth
of the trees to 8. The last two TTCs rely on a neural network implemented in
Keras [21]. As shown in Fig. 3, the architecture has two inputs. First, the se-
quence tensor is passed to a Long Short-Term Memory (LSTM) network. LSTM
is a special type of Recurrent Neural Network (RNN) introduced in [22]. Com-
pared to RNN, LSTM possesses a more advanced memory cell that gives LSTM
powerful modeling capabilities for long-term dependencies [3]. The output of the
LSTM network and the base features are provided to a fully connected layer.
Both the LSTM network and the fully connected layer have 16 cells. We use
Adam [23] as an optimizer and we set the number of epochs to 100.

3 Available at https://github.com/dmlc/xgboost/tree/master/python-package
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4 Benchmark

In this section, we benchmark the five TTCs described in the previous section,
in addition to a baseline approach.

4.1 Datasets

We used 13 event logs4 well known in the process mining literature. The event
logs come from “real-life” systems, offering the advantage of containing complex
traces and a wide range of characteristics visible in Table 1.

To the best of our knowledge, these event logs do not contain truncated
traces. However, this is difficult to confirm. For instance, exceptional events
might happen several months after the event log extraction date. In general,
without having a deep expertise of the domain under analysis and direct access
to the person in charge of the dataset extraction, it is not possible to guarantee
that all traces are complete. We use the term ‘false complete’ to refer to traces
that we wrongly consider complete during the training phase but that are in
fact truncated because more events will happen. We claim that a TTC should
be resilient to ‘false complete’. In other words, a TTC should not overfit on a
single ‘false complete’ and wrongly classify all similar traces as complete.

To test the resilience of the TTCs, we generated 0%, 10%, and 20% of ‘false
complete’ traces by randomly cutting them. The setting with 0% of ‘false com-
plete’ reflects how the TTC should be used with a real dataset, i.e., considering
all the traces as complete. For the two other settings, we kept track of the traces
that are truncated and refer to them as ‘ground truth’. To benchmark the var-
ious TTCs, we use the ground truth. For instance, let us define that 〈abc〉 is a
complete trace that we randomly cut to become the following ‘false complete’:
〈ab〉. During the training phase, we train the classifier to consider 〈ab〉 as a com-
plete trace, while during the evaluation 〈ab〉 should be classified as truncated to
be well classified.

Table 1. Characteristics of the 13 datasets.

BPI_12 164.5K13.1K 23 96 12.63
BPI_13_CP 6.7K1.5K 7 35 4.51
BPI_13_i 65.5K7.6K 13 123 8.71
BPI_15_1 52.2K1.2K 398 101 43.62
BPI_15_2 44.4K0.8K 410 132 53.31
BPI_15_3 59.7K1.4K 383 124 42.43
BPI_15_4 47.3K1.1K 356 116 44.91
BPI_15_5 59.1K1.2K 389 154 51.15
BPI_17 561.7K31.5K 26 61 17.88
BPI_18 123.3K2.0K 129 680 61.935

Env_permit 38.9K0.9K 381 95 41.62
Helpdesk 13.7K3.8K 9 14 3.61

Dataset #activities#σ
Unique
activities

Max
Length(σ)

Min
Length(σ)

Mean
Length(σ)

BPI_19 1.6M251.7K 42 990 6.31

4 Downloaded from https://data.4tu.nl/repository/collection:event logs real
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4.2 Baseline: Decreasing Factor

Standard process mining tools and libraries such as the plugin ‘Filter Log us-
ing Simple Heuristics’ in ProM5, the software Disco6 or the Python library
PM4Py [24] offer some options to remove truncated traces. Typically, a set of
ending activities is selected by the end-user and the traces that do terminate
with the ending activities are considered truncated and removed. It is also pos-
sible to automatically determine the set of ending activities. Let S be the set of
ending activities that we will use to filter the truncated traces. As a baseline,
we use the method implemented in PM4Py which works as follows: First, the
number of occurrences of each activity as a last activity is counted. Let Ci be
the count of the ith most frequent end activity. We start by adding the most
frequent end activity, C1, to S. Then, we calculate the decreasing factor of the
next most frequent activity using the following formula: Ci/Ci−1. If the decreas-
ing factor is above a defined threshold we add Ci to S and move to next most
frequent activity. If the threshold is not met, we stop the process. We tried the
following thresholds: 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, and 0.70. We report the
results obtained using a threshold of 0.60 as it is the one that yields the best
accuracy to detect truncated traces. Interestingly, it is also the default value in
PM4Py.

4.3 Evaluation

The first 80% of the traces were used to train the model, and the evaluation was
done on the remaining 20%. Out of the 80% of training data, 20% was used to
validate the parameters. To compare the ground truth with the output of the
TTC, we used the Matthews Correlation Coefficient (MCC) [25]. The MCC has
the nice property of using all the quantities of the confusion matrix, i.e., True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). Its value lies between -1 and 1, where 0 represents a random prediction,
1 a perfect score, and -1 an inverse prediction. It is defined as:

MCC(σ) =
TP · TN − FP · FN√

(TP + FN)(FP + FN)(TN + FP )(TN + FN)

Fig. 4 aggregates the results per TTC, while Fig. 5 contains the detailed
results. In Fig. 5, we can see a large MCC score gap per dataset. This gap high-
lights the various levels of complexity involved in detecting truncated traces.
Also, none of the techniques always outperforms the others. This is in line with
a similar conclusion that was drawn from large predictive business process moni-
toring experiments [26]. Nonetheless, when looking at Fig. 4, we observe that the
TTC ‘3 FB&LA’ has the highest median MCC score. Interestingly, the perfor-
mance of the baseline is comparable to the best implementations for the following
five datasets: BPI 13 CP, BPI 13 i, BPI 18, Env permit, Helpdesk (see Fig. 5).

5 http://www.promtools.org
6 https://fluxicon.com/disco/
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For the other eight datasets, there is a clear drop in performance between the
baseline and more sophisticated methods. Looking at Table 1, we do not see any
clear dataset characteristics to explain the performance gap. We conclude that
looking at the last activity might work well, but for some datasets it is better to
use a more sophisticated TTC.

We also tested the null hypothesis that the results from different TTCs come
from the same distribution. To do this, we ran a permutation test with 100,000
random permutations and a p-value of 0.05. The results are visible in Fig. 6. As
can be seen, ‘3 FB&LA’ outperforms the baseline approach with strong statistical
significance. We also observe that transforming a multi-class problem into a
binary classifier–using the ‘4 Soft’ instead of the ‘5 Sig’–does not seem to improve
the ability of the TTC to detect truncated traces, as the MCC scores of Fig. 4
are comparable.

Fig. 7 compares the execution time per TTC. The baseline takes in the order
of milliseconds to run. TTCs that are based on XGboost take in the order of
seconds or minutes to run, while approaches that rely on neural networks take
from minutes to hours to run. In fact, the ‘4 Soft’ and ‘5 Sig’ are on average 112
times slower than the other TTCs that rely on XGBoost.

0.0 0.2 0.4 0.6 0.8 1.0

0 Baseline

1 LA
0.49<

2 FB
0.45<

3 FB&LA
0.55<

4 Soft
0.43<

5 Sig
0.44<

median: 0.30<

Fig. 4. Boxplot showing the MCC scores per technique. Each dot depicts an individual
value. The median is written on top.

The full benchmark implementations, the parameters, and the event logs, as
well as the results are available online7. The machine used for the experiment
has 61GB of RAM, 4 CPUs, and a GPU that speeds up the neural network
training phase.

7 https://github.com/gaelbernard/truncated-trace-classifier
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5 Improving Discovered Process Models with a TTC

A process discovery algorithm discovers a process model from an event log [6].
Because the discovered process model is based on event logs, it offers the ad-
vantage of being a data-driven approach that shows how the process is really
executed. However, discovering a process model from an event log is a challeng-
ing task. Typically, process discovery algorithms are sensitive to noise [10–13].
Applying process mining techniques on traces that must supposedly be complete
but are instead truncated is no exception. The quality of a process model is com-
monly measured using four competing metrics [12]: (1) The precision measures
to what extent behaviors that were not observed can be replayed on the process
model. (2) The fitness measures to what extent the traces from the event logs
can be replayed on the model. (3) The generalization ensures that the model
does not overfit. Finally, (4) the simplicity measures the complexity involved to
read the process model. When facing truncated traces, a process discovery algo-
rithm will wrongly infer that the process can be stopped in the middle. This will
negatively impact the precision of the discovered process model. To solve this
issue, researchers advocate removing truncated traces [5, 6, 8]. As highlighted by
Conforti et al., “[t]he presence of noise tends to lower precision as this noise
introduces spurious connections between event labels” [11].

We ran an experiment to measure the impact of removing truncated traces
on the quality of the process models using PM4Py [24], a process mining li-
brary in Python. We used the default metrics in PM4Py which are described in
the following papers: precision [27], fitness [6, p. 250], generalization [28], and
simplicity [29]. To start, we randomly generated 100 process models with the
PM4py implementation of PTandLogGenerator [30], using the default parame-
ters8. For each process model, we produced an event log containing 1,000 traces.
We produced 20 variations of each event log with a level of noise ranging from
0 to 1, where 0 means that no traces were truncated and 0.05 means that 5% of
the traces were truncated, and so on. Altogether, this process produced 20,000
event logs. For each of the 20,000 event logs, we ran the following experiment:

8 Visible at: https://pm4py.fit.fraunhofer.de/documentation#process-tree-generation
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(1) We applied the Inductive Miner [15] on the event logs to discover a process
model, and (2) then we replayed the original event log–that did not contain the
truncated traces–on the process model to measure the quality of the discovered
process models. This was the experiment without a TTC. For the experiment
with a TTC, we applied the exact same steps, but, beforehand, we automatically
removed the truncated traces with the TTC ‘3 FB&LA’ described in Section 3.
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Fig. 8. Impact of the truncated traces on the process model qualities.

Table 2. Mean process quality of
the discovered process models with
and without the TTC.

Precision

-7.8%
-1.7%

Average

increasewithout ttc
0.5267

0.7064 1.7%

9.4%0.7413

0.6328
0.9687

0.8112

0.7184

Fitness

0.4829 9.1%

0.5833Simplicity
0.9523

Generalization

with ttc

In Fig. 8, the results are averaged. As can
be seen, the precision and the generalization
metrics are greatly improved, while the sim-
plicity and the fitness dimensions are nega-
tively impacted. Table 2 shows that the aver-
age process quality is improved by 1.7%. Fig. 8
shows the link between the ratio of truncated
traces in the event logs and the quality of the
resulting process models. The average process
quality visible at the top of Fig. 8 shows that when there are some truncated
traces in the event logs, applying the TTC is always beneficial. In the next
section, we show that a TTC can also increase the prediction of the next events.

6 Improving Next Event Prediction with a TTC

The goal of a next event algorithm is to predict the most likely event that will
follow a truncated trace. As shown with the ‘4 Soft’ TTC, we can turn a next
event algorithm into a TTC. Looking at the benchmark in Fig. 4, we show that
the TTC ‘3 FB&LA’ outperforms the TTC ‘4 Soft’. We have the intuition that
combining the best TTC with a next event algorithm will increase the prediction
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accuracy. The rationale is that we will more accurately predict the end of the
process with a TTC because it has been trained for this purpose. Hence, we first
rely on the TTC to predict if more events are expected. If not, we do not need
to call the next event algorithm. Overall, we should improve the results as we
avoid predicting a next event when the trace is not truncated. The goal of this
section is to validate this hypothesis.

As it is initially a next event prediction algorithm, we use the TTC ‘4 Soft’
for the prediction of the next event. In the setting without a TTC, it is the only
algorithm involved. In the version with a TTC, we complement the architecture
with the TTC ‘3 FB&LA’ in the following way. First, we assess if the trace is
truncated using the TTC. If the trace is truncated, we predict the next event.
Conversely, if the trace is already complete, we do not need to predict the next
event. The results are visible in Table 3. Including a TTC improves the accuracy
by up to 7.5% and on average by 1.4%. In the experiment, building the TTC
took an extra 2.4% of duration. We claim that including a TTC is beneficial
for the accuracy while having a limited negative execution time impact. A TTC
solves one problem noted by Tax et al.: “We found that LSTMs have problems
[...] to predict overly long sequences of the same activity, resulting in predicted
suffixes that are much longer than the ground truth suffixes” [3].

Table 3. Comparing the accuracy of predicting the next event and the execution time,
without and with a TTC.

116 116Helpdesk --0.8226 0.8226
3880.2324 - 3730.2325 3.9%Env_permit

0.4755 1.4%BPI_19 87970.4855 86742.1%
0.6277 0.6323 786 2.2%0.7%BPI_18 804

1.0%0.6%0.7642 0.7689 23422318BPI_17
0.0884 663BPI_15_5 1.3% 4.4%6340.0873

0.6% 366BPI_15_4 3830.1385 0.1394 4.4%
0.1364 851 2.5%BPI_15_3 0.1364 873-

0.6%
increase

0.4%
-

3.5%
6.6%

521

628

with ttc

172

347

1066
172

without ttc

324

1060

606

519

0.1584 5.0%BPI_15_2 0.1509
0.0851BPI_15_1 0.0915 7.5%

0.6896
0.5559

with ttc
-
-

increasewithout ttc

0.5559
0.6899

BPI_13_CP
BPI_12
Dataset

0.6486 0.1%0.6478BPI_13_i

Accuracy Execution time (in seconds)

7 Related Work

To the best of our knowledge we are the first to focus on the task of distinguishing
truncated from complete traces. Still, existing works—especially in the area of
predictive process monitoring—are relevant to uncover truncated traces.

Predictive process monitoring anticipates whether a running process instance
will comply with a predicate [4]. For instance, a predicate might be about the
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process execution time, the execution of a specific event, or the total amount of
sales. As highlighted by Verenich et al., techniques in this space differ according
to their object of prediction [18]. A TTC is a specific type of predictive process
monitoring task where the predicate is whether we will observe more events.
In [31], Maggi et al. propose a generic predictive process monitoring approach.
Once the predicate is set, the most similar prefixes are selected based on the edit
distance. Finally, a classifier is used to correlate the goal with the data associ-
ated with the process execution. Insights are then provided to the end-user to
optimize the fulfillment of the goal while the process is being executed. It was
later extended with a clustering step to decrease the prediction time [4]. Tax
et al. propose a neural network that leverages LSTM that could serve as an-
other generic predictive process monitoring algorithm capable of fitting different
predicates [3]. In our work, we use the approach from Tax et al. as a baseline
(i.e., TTC ‘4 Soft’). Despite the advantage of being generic, we show that a
tailor-made algorithm to detect a TTC outperforms such an approach.

The goal of a business process deviance mining algorithm is to assign a binary
class–normal or deviant–to a trace. In this sense, it shares similarities with pre-
dictive process monitoring. This is especially true because of their overlapping
inputs and feature extraction methods [32]. However, deviance mining works on
completed instances and focuses on the why [32].

Finally, Bertoli et al. propose a reasoning-based approach to recover missing
information from event logs [33]. Ultimately, it would allow us to turn a trun-
cated trace into a complete one. To work, this technique requires a reference
process model as input. Therefore, it is not applicable if the task at hand is to
discover a process model.

8 Conclusion

Event logs are often noisy, which makes the application of process mining some-
times difficult in a real setting [13]. Typically, the existence of truncated traces
is known. Still, there is a research gap in systematically detecting them. In this
work, we treat the identification of truncated traces as a predictive process mon-
itoring task and we benchmark several TTCs using 13 complex event logs. We
show that building a TTC that consistently achieves high accuracy is challeng-
ing. This finding highlights the importance of conducting further research to
build an efficient TTC. Typically, for some event logs, using a baseline approach
that relies solely on the last activity works well. Still, we show that the TTC ‘3
FB&LA’ outperforms such baseline approach with strong statistical significance.

We also measure the process model quality impact when a process discovery
algorithm is run on event logs that contain truncated traces. We show that only
a few truncated traces can greatly decrease the process model quality and that
a TTC can alleviate this problem by automatically removing truncated traces.
Finally, we highlight the unexplored potential of a TTC to increase the accuracy
of predicting the next event. We expect that more benefits of TTCs are yet to
be discovered, especially in the predictive business process monitoring area.
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In this work, we use the sequence of activities as well as some timing infor-
mation. Using more information such as the name of the resource, the day of
the week or any other event attributes could further improve the accuracy of the
TTCs. Higher accuracy could also be achieved by using different classifiers, try-
ing new neural network architecture, or implementing alternative feature spaces.
This is an area for future research where our work can serve as a baseline.
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