
Discovering Customer Journeys from Evidence:
a Genetic Approach Inspired by Process Mining

Gaël Bernard and Periklis Andritsos

1 University of Lausanne, Faculty of Business and Economics (HEC), Switzerland
gael.bernard@unil.ch

2 University of Toronto, Faculty of Information, Toronto, Canada,
periklis.andritsos@utoronto.ca

Abstract. Displaying the main behaviors of customers on a customer
journey map (CJM) helps service providers to put themselves in their
customers’ shoes. Inspired by the process mining discipline, we address
the challenging problem of automatically building CJMs from event logs.
In this paper, we introduce the CJMs discovery task and propose a ge-
netic approach to solve it. We explain how our approach differs from
traditional process mining techniques and evaluate it with state-of-the-
art techniques for summarizing sequences of categorical data.

Keywords: customer journey mapping, process mining, customer jour-
ney analytics, genetic algorithms

1 Introduction

We aim to summarize customer journeys. A customer journey is a collection of
interactions (or touchpoints) between a customer and a firm. A journey can be
as simple as a single activity (e.g., ‘looking at a product’), but can also involve
complex interactions. Concretely, a challenge faced by many practitioners is to
make sense of the–potentially infinite–combination of activities that exist in
order to consume a service. As a response, new methods to understand, design,
and analyze customer journeys are emerging from the industry and are becoming
increasingly popular among researchers. One of these methods, which is the focus
of this paper, is the Customer Journey Map (CJM). A CJM is a conceptual tool
used for better understanding customers’ journeys when they are consuming
a service. A CJM depicts typical journeys experienced by the customers across
several touchpoints. To represent a CJM, we use a visual chart showing the basic
components of a CJM; namely, the touchpoints, and the journeys. It possesses
two axis: the y-axis lists the touchpoints in alphabetical order, while the x-axis
represents the ordering of the sequence of touchpoints. Dots connected with a
smooth line represent a journey.

The left part of Fig. 1 display a CJM containing all the observed journeys
from customers while the right part shows how our algorithm helps in reducing a
CJM’s complexity by building three representative journeys that best summarize
the entire dataset. Summarizing thousands of journeys using few representatives

2 G. Bernard et P. Andritsos

Sequence of activities

touchpoints

All other home activities
Attending class
Civic/Religious Activities
Eat meal outside of home
Health Care
Household errands
Personal Business
Picked up passenger
Recreation/Entertainment
Routine Shopping
Service Private Vehicle
Shopping
Visit Friends/Relatives
Work/Job
Working at home (for pay)

All other home activities

Shopping

Work/Job
Sequence of activities

1

touchpoints

2

Fig. 1. Ê A fraction of the dataset –612 sequences out of 123’706– displayed on a CJM,
and Ë, a CJM that summarizes the entire dataset using three representatives.

has many compelling applications. First, it allows a business analyst to discover
the common customers’ behaviors. Second, the representative journeys extracted
from data can also serve as a basis to fuel the discussion during workshops and
complement strategic CJM built by internal stakeholders. Third, by assigning
each journey to its closest representative, we turn a complex type of input data
into a categorical one. The latter can be used to complete the traditional types
of data that are used to perform behavior segmentation (e.g., usage volume,
loyalty to brand).

Our work contributes by: (1) clarifying the customer journey discovery ac-
tivity which has, to the best of our knowledge, never been defined, (2) proposing
ground truth datasets, which are particularly suited for evaluating this activ-
ity, and (3) introducing a genetic algorithm to discover representative journeys.
Using the proposed datasets and existing cluster analysis techniques, we demon-
strate that our approach outperforms state-of-the-art approaches used in social
sciences to summarize categorical sequences.

The paper is organized as follows. Section 2 defines the customer journey
discovery activity while Section 3 provides an overview of existing techniques
closely related to this task. Section 4 introduces our genetic algorithm. In Section
5, we evaluate the results. Finally, Section 6 concludes the paper.

2 Customer Journey Discovery

The customer journey discovery activity can be described with the following def-
inition: given a set of actual journeys, find a reasonable amount of representative
journeys that well summarize the data.

Definition 1 (Touchpoint): a touchpoint is an interaction between a cus-
tomer and a company’s products or services [2]. ‘Sharing on social network’ or
‘ordering a product on the website’ are two typical examples of touchpoints in a
retail context. Let t be a touchpoint, and let T be the finite set of all touchpoints.

Definition 2 (Journey): A journey J is a sequence of touchpoints. For
instance, J = {〈‘Visiting the shop’, ‘Testing the product’, ‘Sharing on social
network’〉} is a journey with three touchpoints. For the sake of brevity, we re-
place the touchpoints with alphabetical characters so that J becomes 〈ABC〉.

Discovering Customer Journeys from Evidence 3

Definition 3 (Actual Journey): An event log Ja is the set of all actual
journeys observed from customers.

Definition 4 (Event Logs): Let JA be an event log, the set of all actual
journeys observed by customers.

Definition 5 (Representative Journey): A representative journey, Jr, is a
journey that summarizes a subset of actual journeys ∈ JA.

Definition 6 (Customer Journey Map): A CJM summarizes customer jour-
neys through the use of representative journeys. Let a customer journey map JR
be the set of all the Jrs summarizing JA. Let kR denotes the number of journeys
in a map (i.e., |JR|). Typically, the part Ë of Fig. 1 is a CJM, JR, containing
three representative journeys, Jr (kR = 3), summarizing an event log JA.

Discovering JR from JA is an unsupervised clustering task that entails in-
teresting challenges. First, there is no work in the literature that deals with the
optimal number of kR. Second, the sequence that best summarizes its assigned
actual journeys needs to be found.

3 Related Work

In [1], we propose a web-based tool to navigate CJMs, which is called CJM-ex
(CJM-explorer). It uses a hierarchical structure so that the first layers show only
the most representative journeys, abstracting from less representative ones.

C

A

D

D

B

E

A

C

B

E
time

Fig. 2. Expected BPM and CJM when L = [〈abab〉, 〈dce〉, 〈cde〉].

In [2], we show that the process mining framework as well as the input data
are relevant in a customer journey analytics context. Similar to the process dis-
covery activity in process mining, this work focuses on the discovery of a model
from event logs. Our work was inspired by the approach in [3, 6, 14] where the
authors propose discovering business process models (BPMs) using a genetic
algorithm. A BPM and a CJM is not used for the same purpose. Fundamen-
tally, the goal of a BPM is to find models that best describe how the processes
are handled. In contrast, the aim of a CJM is to help internal stakeholders to
put themselves in their customers’ shoes. Fig. 2 shows that these models con-
vey different type of information. A CJM depicts journeys as experienced by
customers while a BPM shows the available combination of activities using ad-
vanced constructs such as exclusive or parallel gateways. Overall, CJMs are used
to supplement but not to replace BPMs [12].

4 G. Bernard et P. Andritsos

In fact, our work is closer to the summarization of categorical sequences used
in social sciences. In particular, in [8, 9], Gabadinho et al. propose summarizing
a list of observed sequences (i.e., actual journeys) using representative (i.e., rep-
resentative journey). They define a representative set as “a set of non-redundant
‘typical’ sequences that largely, though not necessarily exhaustively, cover the
spectrum of observed sequences” [8]. We argue that their definition matches our
definition of a representative sequence summarizing a set of sequences. The au-
thors propose five ways to select a representative. The ‘frequency’ (1), where the
most frequent event is used as the representative. The ‘neighborhood density’ (2),
which consists of counting the number of sequences within the neighborhood of
each candidate sequence. The most representative is the one with the largest
number of sequences in a defined neighborhood diameter. The ‘mean state fre-
quency’ (3): the transversal frequencies of the successive states is used to find a
representative using the following equation:

MSF (s) =
1

`

∑̀
i=1

fsi (1)

where

s = s1s2...sl : Sequence of length `
(fs1 , fs2 , ...fsl) : Frequencies of the states at time t`

The sum of the state frequencies divided by the sequence length becomes
the mean state frequency. Its value is bounded by 0 and 1 where 1 describes
a situation where there is only one single distinct sequence [8]. The sequence
with the highest score is the representative. The ‘centrality’ (4): the represen-
tative – or medoid – can be found using the centrality. Being the most central
object, the representative is the sequence with the minimal sum of distances
to all other sequences. Finally, the ‘sequence likelihood’ (5): the sequence likeli-
hood of a sequence derived from the first-order Markov model can also be used
to determine the representative. In the evaluation section, we compare our ge-
netic approach with these five techniques using their own implementation of the
package Traminer available in R [7].

4 Genetic Algorithm for CJM Discovery

1. Pre-
processing

2. Initial
Population

3. Assign actual
journeys

6. Genetic
Operation

Event logs
(input)

5. Stop
Criterion Eval.

CJM
(output)

4. CJM
Evaluation

Fig. 3. Overview of the genetic algorithm to discover CJMs

Discovering Customer Journeys from Evidence 5

As an introduction, Fig. 3 provides intuition on how the genetic algorithm
builds a CJM such as the one visible in Fig. 1 (part Ë). A set of actual journeys,
Ja, is provided to the algorithm. Then, during Generation 1, we build p number
of JR, where p is the population size; i.e., the number of CJMs that will be
evaluated after each generation. In our example p = 3. Each JR is evaluated and
we keep the e best JRs, called the elite set while we discard the other (p − e)
JRs. Then, we move to Generation 2, where we keep an untouched version of
the e number of JRs in the elite set. For instance, JR2 was kept in Generation
2 because it has the best average quality in Generation 1, i.e., JR2 is intact
in Generation 2. We then apply some transformation (to be discussed next)
to generate (p − e) new JRs that will, in turn, be evaluated. In our case, we
generate JR4 and JR5. We recursively transform and evaluate the p number of
JRs until a stopping criterion is met. Once a stopping criterion is met, we return
the best JR. The best JR can be interpreted as the best set of representative
journeys, Jr, representing a set of journeys from JA that have been found given
acertain evaluation criterion. The next section describes how we generate the
initial population, what various types of operations we apply on each JR to
transform them, and how we evaluate each one of them given a set of journeys
in JA.

4.1 Preprocessing

To gain in efficiency, we make the assumption that JR will be close to the
frequent patterns observed in Ja. Let Top`n be the n most occurring pattern
of length ` and Topn ⊇ Top`[2,m]

be the superset of all the most occurring
patterns of lengths 2 to m. Topn is used later to form the initial population of
JR (described in Section 4.2), and to add a random journey to JR. Using Topn
we avoid generating journeys by picking a random number of touchpoints from
T . According to our experiments, using Topn reduces the execution time by two
to get an output JR of the same average quality.

4.2 Initial Population

The initial population is generated by adding a sequence randomly picked from
Topn (defined in Sect. 4.1).

4.3 Assign Actual Journeys

The quality of a representative journey can only be measured when knowing
which actual journeys it represents. Hence, a first step toward evaluating the
quality of JR is to assign each journey Ja ∈ JA to its closest journey in Jr ∈
JR. To characterize the closeness between Ja and Jr, we use the Levensthein
distance borrowed from [11]. It is a metric particularly well suited to measure
the distance between sequences. The Levensthein distance counts the number of
edit operations that are necessary to transform one sequence into another one.

6 G. Bernard et P. Andritsos

There are three types of operations: deletions, insertions, and substitutions. For
instance, the distance between 〈abc〉 and 〈acce〉 is 2 since one substitution and
one insertion are required to match them. We define the closest representative
as the one having the smallest Levensthein distance with the actual journeys.
Note that if a tie occurs between multiple best representatives, we assign the Ja
to the Jr having the smallest amount of actual journeys already assigned to it.
Once each actual journey has been assigned to its closest representative, we can
evaluate JR using the criteria described in the next section.

4.4 CJM Evaluation Criteria

This section introduces the evaluation criteria used to determine the quality of
each JR, namely, (1) the fitness, (2) the number of representatives, and (3) the
average quality.

Fitness. The fitness measures the distance between each sequence of activities
Ja and its closest representative JR using the Levenshtein distance [11].

Fitness(Ja, JR) = 1−
∑|Ja|

i=1 min
|JR|
j=1 (Levensthein(σAi

;σRj
))∑|Ja|

i=1 Length(σAi
)

(2)

where

σAi
: ith actual sequence observed in event logs

σRj
: jth representative contained in JR

Levenshtein(x1, x2) : Levensthein distance between two sequences
Length(x) : Length of the sequence of activity x

A fitness of 1 means that the representative journey perfectly catches the
behavior of the actual journeys assigned to it. In contrast, a fitness close to 0
implies that many edit operations are necessary to match the sequences.

Number of Representatives. If we maximize the fitness without trying to
keep a low kR, the CJM will become unreadable because too many represen-
tative journeys will be displayed in it. In other words, JR overfits. Hence, the
goal is to find a kR that offers a good compromise between underfitting and
overfitting. Finding the optimal number of clusters is a recurrent challenge when
clustering data. We propose integrating traditional ways of determining the op-
timal number of clusters, such as the Bayesian information criterion [13], or the
Calinski-Harabasz index [5]. The idea is to evaluate a range of solutions (e.g.,
from 2 to 10 journeys) and to keep the best solution. Let kh be the optimal
number of clusters returned by one of the techniques mentioned above. By in-
tegrating kh into the evaluation, we can guide the solution toward a kR that is
statistically relevant. To evaluate the quality, we measure the distance between
kR and kh. To do this, we propose the following distribution function:

Discovering Customer Journeys from Evidence 7

NumberOfRepresentatives(kR, kh, x0) =
1

1 + (|kR−kh|
x0

)2
(3)

where

kR : Number of Jr journeys on JR (i.e., |JR|)
kh : Optimal number of journeys (e.g., using the Calinski-Harabasz index)
x0 : x value of the midpoint

The parameter x0 determines where the midpoint of the curve is. Concretely,
if x0 = 5, kR = 11 will result in a quality of 0.5 because the absolute distance
from kh is 5. We set x0 = 5 for all our experiments. Intuitively, x0 guide the
number of representatives that will be found. We set it to 5 as we believe that
it is a reasonable amount of journeys to display on a single CJM. Because the
number of representatives is not the only criteria to assess the quality of a CJM,
the final CJM might contain more or less journeys if it increases the average
quality.

Average Quality. We assign weights to the fitness and the number of rep-
resentatives qualities to adjust their relative importance. According to our ex-
periments and in line with the work from Buijs et al. [3], the results tend to be
best if more weight is given to the fitness quality. Typically, weights wf = 3,
and wkh

= 1 lead to the best results. Then, we get the overall quality by aver-
aging the weighted qualities using the arithmetic mean. In the next section, we
determine the stopping criterion of the algorithm.

4.5 Stopping Criterion

Before starting a new generation, we check if a stopping criterion is met. There
are three ways we can use to stop the algorithm taken from [3, 6]. (1) The al-
gorithm could stop after a certain number of generations. (2) One could stop
the algorithm when a certain number of generations have been created without
improving the average quality. (3) We could stop the algorithm when a certain
quality threshold is reached for one of the evaluation criteria. Because it is dif-
ficult to predict the quality level that can be reached, we believe that stopping
the algorithm using a threshold is not advisable. For this reason, we used a com-
bination of approaches 1 and 2 for our experiments. Once the stopping criteria
have been evaluated, either the algorithm stops, or, we generate new candidates
by applying genetic operators described in the next section.

4.6 Genetic Operations

Once all the CJMs have been evaluated, we rank them by their average quality
and copy a fraction (i.e., e) of the best ones in elite. Because we keep an un-
touched version of the e number of JRs, we make sure that the overall quality

8 G. Bernard et P. Andritsos

will only increase or stay steady. Then, we generate (p− e) new JRs as follows.
We pick one random JR from elite, and perform one or multiple of these four op-
erators. (1) Add a journey: A sequence is randomly picked from Topn and added
to JR. (2) Delete a journey: A random journey is removed from JR. Nothing
happens if JR contains only one journey. (3) Add a touchpoint: A touchpoint
from T is added to one of the journeys from JR at a random position. (4) Delete
a touchpoint: A touchpoint is removed from JR unless removing this touchpoint
would result in an empty set of touchpoints. As described in Fig. 3, once new
JRs have been created, we go back to the evaluation phase where the new JRs
are evaluated until one stopping criterion is met. Once such a criterion is met,
we return the best JRs of the last generation and the algorithm stops.

5 Evaluation

5.1 Datasets

We produced several event logs that simulate journeys. Generating the event logs
ourselves means that we know the ground truth represented by the generative
journeys and therefore the objective is to recover these journeys from a set of
actual ones we produce. A generative journey is a known list of touchpoints from
which we generate the event logs. Let JG be a set of kG generative journeys used
to generate a dataset composed of 1,000 actual journeys.

If we were to use only these generative journeys to generate 1,000 journeys,
we would obtain only kG distinct journeys. For instance, if we use Jg1 = 〈abc〉
and Jg2 = 〈abbd〉 to generate 1,000 journeys equally distributed, we obtain
Ja =

{
J500
g1 , J500

g2

}
. A more realistic situation would depict a scenario where each

group of customers can be described by a representative sequence of activities,
but the actual journeys within the group can deviate from the representative
one. Hence, to produce more realistic data, we inject noise for a fraction of the
journeys. For instance, if the noise level is set to 50%, Ja = Jg is true for half of
the data. For the other half, we add noise by removing or adding touchpoints,
or by swapping the ordering of activities.

We generated 8 datasets of varying characteristics. The characteristics are
distinct in terms of: number of kG , number of touchpoints, average length of
the journeys, and the standard deviation of the number of journeys assigned to
each generative journey. For each dataset, we gradually apply 5 levels of noise,
resulting in 40 datasets. The datasets, the detailed characteristics of them as
well as the procedure followed to produce them are available at the following
url: http://customer-journey.unil.ch/datasets/.

5.2 Metrics

We use both external and internal evaluation metrics. On the one hand, the
external ones evaluate the results relative to the generative journeys. On the
other hand, the internal evaluation uses cluster analysis techniques to assess the

Discovering Customer Journeys from Evidence 9

results. The aim is to account for the fact that the ground truth might not be the
optimal solution because of the noise that was added. This section introduces
these metrics. For the internal evaluation metrics, we borrowed them from [9].

External Evaluation - Jaccard Index. To evaluate the similarity between
the sequences of activities from the generative journeys (JG) and the discovered
representative journeys (JR), we propose to use the Jaccard index where a score
of 1 indicates a perfect match.

JaccardIndex(JR, JG) =
|JR ∩ JG |
|JR ∪ JG |

(4)

External Evaluation - Distance in Number of Journeys. This metric
measures the distance between the number of generative journeys and the num-
ber of representative journeys returned by the algorithm. We propose:

NbJourneysDistance(kG , kR) = abs(kG − kR) (5)

Internal Evaluation - Mean Distance [9]. The mean distance i returns
the average Levensthein distance between the representative sequence i and the
sequence of actual journeys that have been assigned to i, ki being the number
of actual journeys assigned to the representative journey i.

MeanDistanceScorei =

∑ki

j=1D(Jri , Jaij
)

ki
(6)

Internal Evaluation - Coverage [9]. The coverage indicates the proportion
of actual journeys that are within the neighborhood n of a representative.

Coveragei =

∑ki

j=1 (D(Jri , Jaij
) < n)

ki
(7)

Internal Evaluation - Distance Gain [9]. The distance gain measures the
gain in using a representative journey instead of the true center of the set, C
(i.e., the medoid of the whole dataset). In other words, it measures the gain
obtained in using multiple representative journeys instead of a single one.

DistGaini =

∑ki

j=1D(C(Ja), Jaij
)−

∑ki

j=1D(Jri , Jaij
)∑ki

j=1D(C(Ja), Jaij
)

(8)

5.3 Settings

We evaluate our genetic algorithm (approach 1) against an approach using Kme-
doids clustering (approach 2) and the approaches proposed by Gabadinho et

10 G. Bernard et P. Andritsos

al.[7] (approach 3). Approach 1 is using our genetic algorithm with a fitness
weight set to 3 and a weight for the number of representatives set to 1. Due to
the non-deterministic nature of the genetic algorithm, we run it ten times. In
approach 2, we build a distance matrix of the edit-distance between sequences.
We then create k (found using the Calinski-Harabasz index) clusters using an
implementation, [4], of the k-medoids algorithm. Finally, the medoid of each
cluster becomes the representative. In approach 3 we build the same distance
matrix as then one used in approach 2. Then, we used an agglomerative hierar-
chical clustering to define k clusters. Finally, we return the best representatives
of each cluster using the frequency, the neighborhood density, the mean state
frequency, the centrality, or the likelihood using the package Traminer available
in R [7].

1000 Journeys
(input)

Build Distance
Metrics

K Medoid
clustering

CJM
(output)

Each medoid becomes the
representative

Approach 2: Kmedoids

1000 Journeys
(input)

Genetic
Algorithm

CJM
(output)

Approach 1: Genetic

1000 Journeys
(input)

Build Distance
Metrics

CJM
(output)

Get representatives using: 1) the frequency,
2) the neighborhood density, 3) the mean state
frequency, 4) the centrality, and 5) the likelihood

Agglomerative
hierarchical clustering

Approach 3: Traminer

Fig. 4. Three approaches used to find the representative journeys.

5.4 Results

0.2

0.3

0.4

0.5

0.6

Ja
cc

ar
d

in
de

x

mean
state
freq.

0.203

likelihood
0.216

kmedoids

0.462

neighbor.
density

0.484

centrality

0.568

freq

0.579

genetic
(10 executions)

min: 0.645
max: 0.671
med. 0.656

0.8

0.9

1.0

1.1

D
is

ta
nc

e
in

 N
um

be
r

of
 Jo

ur
ne

ys

genetic

min: 0.747
max: 0.813
med. 0.767

CHsq

1.107

(10 executions)

Fig. 5. External Evaluation

We present the results of the external evaluation metrics, then the internal
ones and we conclude by mentioning the execution times for several datasets
sizes. The external evaluation metrics are shown in Fig. 5. Here, we can see that
the solution that reduces the Jaccard index the most and which is closest to

Discovering Customer Journeys from Evidence 11

the ground truth in terms of number of journeys is the genetic approach. The
internal evaluation in Fig. 6 shows that the genetic algorithm outperforms the
other approaches. Finally, the execution time to for 100 actual journeys is much
faster using the kmedoids or using the techniques implemented in Traminer [7].
We observe that when we increase the datasets’ size the performance of the
genetic algorithm tend to be comparable to the kmedoids implementation and
faster than the techniques implemented in Traminer.

genetic
(10 executions)

kmedoids

 neighbor. density
freq

mean state freq.

likelihood

1.37 (median)
min:1.37 max:1.38

0.59 (median)
min:0.58 max:0.59

0.59 (median)
min:0.59 max:0.60

1.75 0.47 0.48

1.72 0.46 0.48
1.74 0.49 0.48

3.69 0.27 -0.14

2.15 0.40 0.36

Avg. mean distance
(the smaller, the better)

Avg. coverage
(the higher, the better)

Avg. dist-gain
(the higher, the better)

centrality 1.62 0.50 0.51

Fig. 6. Internal evaluation. The genetic algorithm perform best.

100 1000 10000
nb. journeys

0.1

1

10

100

1'000

Av
er

ag
e

tim
e

pe
r

da
ta

se
t (

se
co

nd
s)

0.2sec

1.7sec

51min

38sec
94sec

4.5min

3.2min

3.3sec

0.4sec

kmedoids
Traminer
(freq, neighbor. density,
centrality, likelihood). The
difference in execution
time is insignificant.

genetic
Legend:

Fig. 7. Comparing the execution time per dataset for 100, 1’000, and 10’000 journeys.

6 Conclusion

In this paper, we propose two basic quality criteria to guide the evolution process
of discovering the best representative journeys for a given set of actual journeys
that otherwise would be unreadable. We demonstrate that they perform well
on synthetic datasets. We show that techniques from social sciences are also
useful for studying customer journeys. As suggested by Gabadinho et al., “The
methods are by no way limited to social science data and should prove useful in

12 G. Bernard et P. Andritsos

many other domains” [8]. This present study supports this claim and highlights
how research from social science can benefit our understanding of customers.
At a time when a customer-centric culture has become a matter of survival
according to [10], we anticipate that research at the crossroads between data
science, marketing, and social sciences will be key to a full understanding of
customer experiences.

References

1. Bernard, G., Andritsos, P.: Cjm-ex: Goal-oriented exploration of customer journey
maps using event logs and data analytics. In: 15th International Conference on
Business Process Management (BPM2017) (2017)

2. Bernard, G., Andritsos, P.: A process mining based model for customer journey
mapping. In: Proceedings of the Forum and Doctoral Consortium Papers Presented
at the 29th International Conference on Advanced Information Systems Engineer-
ing (CAiSE 2017) (2017)

3. Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.: A genetic algorithm for dis-
covering process trees. In: Evolutionary Computation (CEC), 2012 IEEE Congress
on. pp. 1–8. IEEE (2012)

4. C, B.: Numpy/scipy recipes for data science: k-medoids clustering[r]. Technical
Report (2015), https://github.com/letiantian/kmedoids

5. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Communications
in Statistics-theory and Methods 3(1), 1–27 (1974)

6. De Medeiros, A.A., Weijters, A.: Genetic process mining. In: Applications and
Theory of Petri Nets 2005, Volume 3536 of Lecture Notes in Computer Science.
Citeseer (2005)

7. Gabadinho, A., Ritschard, G.: Searching for typical life trajectories applied to
childbirth histories. Gendered life courses-Between individualization and standard-
ization. A European approach applied to Switzerland (2013), 287–312 (2013)

8. Gabadinho, A., Ritschard, G., Studer, M., Mueller, N.S.: Summarizing sets of
categorical sequences: selecting and visualizing representative sequences pp. 94–
106 (October 2009)

9. Gabadinho, A., Ritschard, G., Studer, M., Müller, N.S.: Extracting and rendering
representative sequences. In: International Joint Conference on Knowledge Discov-
ery, Knowledge Engineering, and Knowledge Management. pp. 94–106. Springer
(2009)

10. Goran, J., LaBerge, L., Srinivasan, R.: Culture for a digital age. Tech. rep.,
McKinsey (July 2017), https://www.mckinsey.com/business-functions/digital-
mckinsey/our-insights/culture-for-a-digital-age

11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

12. Olding, E., Cantara, M., Robertson, B., Dunie, R., Huang, O., Searle,
S.: Predicts 2016: Business transformation and process management
bridge the strategy-toexecution gap. Tech. rep., Gartner (November 2015),
https://www.gartner.com/doc/3173020/predicts–business-transformation-process

13. Schwarz, G., et al.: Estimating the dimension of a model. The annals of statistics
6(2), 461–464 (1978)

14. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: Prodigen: Mining complete, pre-
cise and minimal structure process models with a genetic algorithm. Information
Sciences 294, 315–333 (2015)

