

SIMPDA 2017 - Neuchâtel (Switzerland)

Matthieu Harbich - Presenter Gaël Bernard - University of Lausanne Dr. Pietro Berkes - Kudelski Pr. Benoît Garbinato Pr. Periklis Andritsos

UNIL | Université de Lausanne HEC Lausanne

Discovering Customer Journey Maps using a Mixture of Markov Models

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Customer Journeys.

Path followed by a customer to consume a service.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Customer Journeys: Capture the Customer Experience.

Customer journeys are becoming increasingly complex

- Numerous channels / devices
- Increasing number of interactions

« Improving understanding of customers has been ranked one of the most important research challenges in the coming year [1] »

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

CJMs: A customer-centric approach.

Customer Journey Maps (CJMs) are used to understand, discuss, or improve the main paths in the usage of a service

Mostly used as a design thinking tool / strategic tool

Getting information Trying

Buying

Sharing experience

Customer journey
Customer journey map
XES - Standard
Challenge
E-M Markov models
Case study
Feature 1
Feature 2
Feature 3
Feature 4
Conclusion

Strategy vs. Reality.

« People don't behave like robots, and no matter how well we craft an experience, they will not perceive exactly as we anticipate or hope » [2]

[2] Richardson, A.: Series on customer journey: Using customer journey maps to improve customer experience, using customer journey maps to improve customer experience, touchpoint bring the customer experience to life. Harb Bus Rev (2010)

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

XES: Discovering CJMs from Event Logs.

- We can leverage these traces to provide fact-based insights on customer journeys Inspired from Process Mining
- INPUT: The XES standard is adequate to store CJMs [3]

Journey	Activity	Timestamp	Customer
1	Getting information	10.05.2016	Z.Davis
	Trying	10.05.2016	Z.Davis
	Buying	10.05.2016	Z.Davis
	Sharing experience	10.05.2016	Z.Davis
2	Getting information	11.05.2016	O.Palmer
	Trying	11.05.2016	O.Palmer
	Buying	11.05.2016	O.Palmer
	Comlaining	12.05.2016	O.Palmer

• When customers interact with a service, it (often) leaves traces

[3] Bernard, G., & Andritsos, P. (2017). A Process Mining Based Model for Customer Journey Mapping.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

1 Event logs (e.g., XES) В \square Α 2 3 4 5 E C G A B D A B D F E C G C A

Challenge: Summarize the Logs using K Representative Journeys.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Challenge: Summarize the Logs using K Representative Journeys.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Challenge: Summarize the Logs using K Representative Journeys.

Customer journey Customer journey map **XES - Standard** Challenge E-M Markov models **Case study** Feature 1 Feature 2 Feature 3 Feature 4 Conclusion

Markov models: Modelling sequences.

« In probability theory, a Markov model is a stochastic model used to model randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it. » - Paul A. Gagniuc

First probability vector

Gagniuc, Paul A. (2017). Markov Chains: From Theory to Implementation and Experimentation. USA, NJ: John Wiley & Sons. pp. 1–256. ISBN 978-1-119-38755-8.

Expectation-Maximization on a Mixture of Markov Models.

Optimizing the log-likelihood of the data

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Case study: The Dataset.

An activity-based travel survey conducted in the Chicago metropolitan area over a demographic representative sample of its population.

29,542 journeys - **2,381** are unique

"being at home" \rightarrow "going to school" \rightarrow "having a meal" \rightarrow "being at home"

16 types of events

Average number of events per journey: 4.8

http://www.cmap.illinois.gov/data/transportation/travel-survey

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Case Study: Results.

Activities:

LEGEND

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 1: Each Model is Responsible for each Journey.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 1: Each Model is Responsible for each Journey.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 1: Each Model is Responsible for each Journey.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 1: Each Model is Responsible for each Journey.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 1: Each Model is Responsible for each Journey.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 2: Limited Number of Parameters.

As input:

Parameters set by a human can have an **important impact** on the representative journeys. The E-M on a mixture of Markov models allows to discover the representative journeys much more **naturally**.

K - Which can potentially be computed upfront thanks to information criterion technics

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 3: Computing the Next Most Probable Event.

Activities:

Visiting friends

Entertainment

Work

Home activities

Customer journey Customer journey map XES - Standard Challenge E-M Markov models **Case study** Feature 1 Feature 2 Feature 3 Feature 4 Conclusion

Feature 4: Handling Shifting Behaviors - Soft Clustering.

С

T0

T0

Model 3

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 4: Handling Shifting Behaviors - Soft Clustering.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 4: Handling Shifting Behaviors - Soft Clustering.

Customer journey map

XES - Standard

Challenge

E-M Markov models

Case study

Feature 1

Feature 2

Feature 3

Feature 4

Conclusion

Feature 4: Handling Shifting Behaviors - Soft Clustering.

Customer journey Customer journey map XES - Standard Challenge E-M Markov models **Case study** Feature 1 Feature 2 Feature 3 Feature 4 Conclusion

Conclusion

Kudelski application

Probabilistic approach robustness

Research in progress!

Q&A